Zinc can counteract selection for ciprofloxacin resistance
Antimicrobial resistance (AMR) has emerged as one of the most pressing threats to public health. AMR evolution occurs in the clinic but also in the environment, where antibiotics and heavy metals can select and co-select for AMR. While the selective potential of both antibiotics and metals is increasingly well-characterized, experimental studies exploring their combined effects on AMR evolution are rare. It has previously been demonstrated that fluoroquinolone antibiotics such as ciprofloxacin can chelate metal ions. To investigate how ciprofloxacin resistance is affected by the presence of metals, the authors quantified selection dynamics between a ciprofloxacin-susceptible and a ciprofloxacin-resistant Escherichia coli strain across a gradient of ciprofloxacin concentrations in presence and absence of zinc.
Technology Database
Display your AMR Technology, Product and Service
Suppliers and Users of Technologies, Products and Services benefit from CAPI.
CAPI (Continuous AMR Partnering Initiative) unites Suppliers and Users worldwide with the aim to add to the curbing of AMR.