Understanding the Antibacterial Resistance: Computational Explorations in Bacterial Membranes

  02 March 2021

The bacterial cell envelope has been identified as one of the key molecular players responsible for antibiotic resistance, attracting considerable interest as a potential target for novel antimicrobials effective against AMR, to be used alone or in combination with other drugs. However, the multicomponent complexity of bacterial membranes provides a heterogeneous morphology, which is typically difficult to study at the molecular level by experimental techniques, in spite of the significant development of fast and efficient experimental protocols. In recent years, computational modeling, in particular, molecular dynamics simulations, has proven to be an effective tool to reveal key aspects in the architecture and membrane organization of bacterial cell walls. Here, after a general overview about bacterial membranes, AMR mechanisms, and experimental approaches to study AMR, we review the state-of-the-art computational approaches to investigate bacterial AMR envelopes, including their limitations and challenges ahead.

Further reading: ACS Publications
Author(s): Alejandra Matamoros-Recio et al
Smart Innovations  
Back

OUR UNDERWRITERS

Unrestricted financial support by:

LifeArc

Antimicrobial Resistance Fighter Coalition

Bangalore Bioinnovation Centre

INTERNATIONAL FEDERATION PHARMACEUTICAL MANUFACTURERS & ASSOCIATIONS





Ambassador Network

Join the AMR Insights Ambassador Network today!

Connect to over 650 AMR professionals and students in 65 countries!

More information

What is going on with AMR?
Stay tuned with remarkable global AMR news and developments!

Keep me informed