Predicting Resistance in Pseudomonas aeruginosa With Machine Learning

  08 October 2019

When dealing with multidrug-resistant pathogens, every minute counts and any way to speed up the prediction of antimicrobial resistance (AMR) is key to reducing morbidity and mortality.

Infections with multidrug-resistant (MDR) Pseudomonas aeruginosa are increasing worldwide, and the organism is especially prevalent in health care-associated settings. But rapid AMR predictions could help with providing optimal care to patients.

Further reading: Contagion Live
Author(s): Alexandra Ward
Smart Innovations  
Back

OUR UNDERWRITERS

Unrestricted financial support by:

LifeArc

Antimicrobial Resistance Fighter Coalition

Bangalore Bioinnovation Centre

INTERNATIONAL FEDERATION PHARMACEUTICAL MANUFACTURERS & ASSOCIATIONS





Ambassador Network

Join the AMR Insights Ambassador Network today!

Connect to over 550 AMR professionals and students in 60 countries!

More information
What is going on with AMR?
Stay tuned with remarkable global AMR news and developments!
WordPress PopUp Plugin