Inhibiting bacterial cooperation is an evolutionarily robust anti-biofilm strategy

  15 January 2020

Bacteria commonly form dense biofilms encased in extracellular polymeric substances (EPS). Biofilms are often extremely tolerant to antimicrobials but their reliance on shared EPS may also be a weakness as social evolution theory predicts that inhibiting shared traits can select against resistance. Here we show that EPS of Salmonella biofilms is a cooperative trait whose benefit is shared among cells, and that EPS inhibition reduces both cell attachment and antimicrobial tolerance. We then compare an EPS inhibitor to conventional antimicrobials in an evolutionary experiment. While resistance against conventional antimicrobials rapidly evolves, we see no evolution of resistance to EPS inhibition. We further show that a resistant strain is outcompeted by a susceptible strain under EPS inhibitor treatment, explaining why resistance does not evolve. Our work suggests that targeting cooperative traits is a viable solution to the problem of antimicrobial resistance.

Further reading: Nature Communications
Author(s): Lise Dieltjens, Kenny Appermans, Maries Lissens, Bram Lories, Wook Kim, Erik V. Van der Eycken, Kevin R. Foster & Hans P. Steenackers
Smart Innovations  
Back

OUR UNDERWRITERS

Unrestricted financial support by:

Antimicrobial Resistance Fighter Coalition

Evotec

JSS University





Technology Database

Display your AMR Technology, Product and Service

Suppliers and Users of Technologies, Products and Services benefit from CAPI.
CAPI (Continuous AMR Partnering Initiative) unites Suppliers and Users worldwide with the aim to add to the curbing of AMR.

Read more and make your own Technology Page >>
What is going on with AMR?
Stay tuned with remarkable global AMR news and developments!