Identification of Antimicrobial Resistance Mechanism May Lead to Novel Drug Targets

  11 March 2021

Scientists say they have identified a critical mechanism that allows deadly bacteria to gain resistance to antibiotics. The findings, “The pentapeptide-repeat protein, MfpA, interacts with mycobacterial DNA gyrase as a DNA T-segment mimic”, which are published in Proceedings of the National Academy of Sciences (PNAS), offer a potential new drug target in the search for effective new antibiotics as we face the growing threat of antimicrobial resistance (AMR) and infections caused by bacterial pathogens.

The study investigated quinolone antibiotics which are used to treat a range of bacterial infections, including tuberculosis (TB). Quinolones work by inhibiting bacterial enzymes gyrase and topoisomerase IV, thereby preventing DNA replication and RNA synthesis essential to growth. They are highly-successful antimicrobial agents widely used in current medicine, but bacterial resistance to them and other treatments is a serious problem.

Author(s): Genetic Engineering and Biotechnology News
Smart Innovations  


Unrestricted financial support by:


Antimicrobial Resistance Fighter Coalition

Bangalore Bioinnovation Centre


Global Ambassador Network

Welcome at the AMR Insights Ambassador Network!

The AMR Insights Ambassador Network is a growing, distinctive group of professionals who stand out for their commitment, willingness to cooperate and open attitude to combat Antimicrobial resistance (AMR).

More information and free-of-charge registration
What is going on with AMR?
Stay tuned with remarkable global AMR news and developments!