Identification of Antimicrobial Resistance Mechanism May Lead to Novel Drug Targets

  11 March 2021

Scientists say they have identified a critical mechanism that allows deadly bacteria to gain resistance to antibiotics. The findings, “The pentapeptide-repeat protein, MfpA, interacts with mycobacterial DNA gyrase as a DNA T-segment mimic”, which are published in Proceedings of the National Academy of Sciences (PNAS), offer a potential new drug target in the search for effective new antibiotics as we face the growing threat of antimicrobial resistance (AMR) and infections caused by bacterial pathogens.

The study investigated quinolone antibiotics which are used to treat a range of bacterial infections, including tuberculosis (TB). Quinolones work by inhibiting bacterial enzymes gyrase and topoisomerase IV, thereby preventing DNA replication and RNA synthesis essential to growth. They are highly-successful antimicrobial agents widely used in current medicine, but bacterial resistance to them and other treatments is a serious problem.

Author(s): Genetic Engineering and Biotechnology News
Smart Innovations  
Back

OUR UNDERWRITERS

Unrestricted financial support by:

LifeArc

Antimicrobial Resistance Fighter Coalition

Bangalore Bioinnovation Centre

INTERNATIONAL FEDERATION PHARMACEUTICAL MANUFACTURERS & ASSOCIATIONS





AMR NEWS

Every two weeks in your inbox

Because there should be one newsletter that brings together all One Health news related to antimicrobial resistance: AMR NEWS!

Subscribe

What is going on with AMR?
Stay tuned with remarkable global AMR news and developments!

Keep me informed