Drug-resistant Staphylococcus Aureus Bacteria Detection with the Combination of Surface-enhanced Raman Spectroscopy and Deep Learning Techniques

  28 May 2021

Over the past year, the world’s attention has focused on combating COVID-19 disease, but the other threat waiting at the door – antimicrobial resistance should not be forgotten. Although making the diagnosis rapidly and accurately is crucial in preventing antibiotic resistance development, bacterial identification techniques include some challenging processes. To address this challenge, we proposed a deep neural network (DNN) that can discriminate antibiotic-resistant bacteria using surface-enhanced Raman spectroscopy (SERS). Stacked autoencoder (SAE)-based DNN was used for the rapid identification of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) bacteria using a label-free SERS technique. The performance of the DNN was compared with other traditional classifiers. Since the SERS technique provides high signal-to-noise ratio (SNR) data, some subtle differences were found between MRSA and MSSA in relative band intensities. 

Further reading: Research Square
Author(s): Fatma Uysal Ciloglu et al
Smart Innovations  
Back

OUR UNDERWRITERS

Unrestricted financial support kindly provided by

Antimicrobial Resistance Fighter Coalition

CDD VAULT Complexity Simplified





Technology Database

Display your AMR Technology, Product and Service

Suppliers and Users of Technologies, Products and Services benefit from CAPI.
CAPI (Continuous AMR Partnering Initiative) unites Suppliers and Users worldwide with the aim to add to the curbing of AMR.

Read more and make your own Technology Page >>
What is going on with AMR?
Stay tuned with remarkable global AMR news and developments!