DESIGNING TOOLS FOR REAL WORLD IMPACT: USING MACHINE LEARNING TO PERSONALIZE ANTIBIOTIC TREATMENT
The rise of antibiotic resistance is a major threat to the practice of medicine and is driven in large part by overuse of antibiotics. In his latest study, Institute Lecturer Sanjat Kanjilal, MD, MPH, and team take on this issue by showing how large-scale machine learning models can be applied to observational electronic health record data to predict antibiotic resistance, make treatment recommendations, and build patient-level and public health models to aid in decision support. We spoke with Dr. Kanjilal to learn more about the study, “A decision algorithm to promote outpatient antimicrobial stewardship for uncomplicated urinary tract infection,” which appears in Science Translational Medicine.
AMR NEWS
Your Biweekly Source for Global AMR Insights!
Stay informed with the essential newsletter that brings together all the latest One Health news on antimicrobial resistance. Delivered straight to your inbox every two weeks, AMR NEWS provides a curated selection of international insights, key publications, and the latest updates in the fight against AMR.
Don’t miss out on staying ahead in the global AMR movement—subscribe now!