Accurate and rapid prediction of tuberculosis drug resistance from genome sequence data using traditional machine learning algorithms and CNN

  15 February 2022

Effective and timely antibiotic treatment depends on accurate and rapid in silico antimicrobial-resistant (AMR) predictions. Existing statistical rule-based Mycobacterium tuberculosis (MTB) drug resistance prediction methods using bacterial genomic sequencing data often achieve varying results: high accuracy on some antibiotics but relatively low accuracy on others. Traditional machine learning (ML) approaches have been applied to classify drug resistance for MTB and have shown more stable performance. However, there is no study that uses deep learning architecture like Convolutional Neural Network (CNN) on a large and diverse cohort of MTB samples for AMR prediction.

Further reading: Nature
Author(s): Xingyan Kuang, Fan Wang, Kyle M. Hernandez, Zhenyu Zhang & Robert L. Grossman
Smart Innovations  


Unrestricted financial support by:

Antimicrobial Resistance Fighter Coalition


JSS University


Technology Database

Display your AMR Technology, Product and Service

Suppliers and Users of Technologies, Products and Services benefit from CAPI.
CAPI (Continuous AMR Partnering Initiative) unites Suppliers and Users worldwide with the aim to add to the curbing of AMR.

Read more and make your own Technology Page >>
What is going on with AMR?
Stay tuned with remarkable global AMR news and developments!