Accurate and fast identification of minimally prepared bacteria phenotypes using Raman spectroscopy assisted by machine learning

  02 October 2022

The worldwide increase of antimicrobial resistance (AMR) is a serious threat to human health. To avert the spread of AMR, fast reliable diagnostics tools that facilitate optimal antibiotic stewardship are an unmet need. In this regard, Raman spectroscopy promises rapid label- and culture-free identification and antimicrobial susceptibility testing (AST) in a single step. However, even though many Raman-based bacteria-identification and AST studies have demonstrated impressive results, some shortcomings must be addressed. To bridge the gap between proof-of-concept studies and clinical application, we have developed machine learning techniques in combination with a novel data-augmentation algorithm, for fast identification of minimally prepared bacteria phenotypes and the distinctions of methicillin-resistant (MR) from methicillin-susceptible (MS) bacteria. 

Further reading: Nature
Author(s): Benjamin Lundquist Thomsen et al
Smart Innovations  


Unrestricted financial support by:

Antimicrobial Resistance Fighter Coalition

Bangalore Bioinnovation Centre


JSS University


Global Ambassador Network

Welcome at the AMR Insights Ambassador Network!

The AMR Insights Ambassador Network is a growing, distinctive group of professionals who stand out for their commitment, willingness to cooperate and open attitude to combat Antimicrobial resistance (AMR).

More information and free-of-charge registration
What is going on with AMR?
Stay tuned with remarkable global AMR news and developments!