Pandemic fluoroquinolone resistant Escherichia coli clone ST1193 emerged via simultaneous homologous recombinations in 11 gene loci

  03 July 2019

Global growth in antibiotic resistance is a major social and health problem. The most common mechanism of high resistance to fluoroquinolones is the sequential acquisition of 3 mutations in 2 DNA topoisomerases, GyrA and ParC. We show that Escherichia coliST1193 acquired the mutant variants of gyrA and parC not by a conventional stepwise evolution but rather all at once. This was likely a result of a single transfer of about 1 Mb of chromosomal DNA from a phylogenetically distant donor E. coli strain, followed by 11 homologous recombination events involving the transferred DNA. Thus we describe a highly effective mechanism of acquisition of antimicrobial resistance by pathogenic bacteria, which led to the emergence of pandemic E. coli clone ST1193.

Further reading: PNAS
Author(s): Veronika Tchesnokova, Matthew Radey, Sujay Chattopadhyay, Lydia Larson, Jamie Lee Weaver, Dagmara Kisiela, and Evgeni V. Sokurenko
Effective Surveillance  


Unrestricted financial support by:

Antimicrobial Resistance Fighter Coalition


JSS University


Technology Database

Display your AMR Technology, Product and Service

Suppliers and Users of Technologies, Products and Services benefit from CAPI.
CAPI (Continuous AMR Partnering Initiative) unites Suppliers and Users worldwide with the aim to add to the curbing of AMR.

Read more and make your own Technology Page >>
What is going on with AMR?
Stay tuned with remarkable global AMR news and developments!