A decision algorithm to promote outpatient antimicrobial stewardship for uncomplicated urinary tract infection

  05 November 2020

Antibiotic resistance is a major cause of treatment failure and leads to increased use of broad-spectrum agents, which begets further resistance. This vicious cycle is epitomized by uncomplicated urinary tract infection (UTI), which affects one in two women during their life and is associated with increasing antibiotic resistance and high rates of prescription for broad-spectrum second-line agents. To address this, we developed machine learning models to predict antibiotic susceptibility using electronic health record data and built a decision algorithm for recommending the narrowest possible antibiotic to which a specimen is susceptible.

 

Author(s): Sanjat Kanjilal, Michael Oberst, Sooraj Boominathan, Helen Zhou, David C. Hooper and David Sontag
Effective Surveillance  
Back

OUR UNDERWRITERS

Unrestricted financial support by:

Antimicrobial Resistance Fighter Coalition

Evotec

JSS University





Technology Database

Display your AMR Technology, Product and Service

Suppliers and Users of Technologies, Products and Services benefit from CAPI.
CAPI (Continuous AMR Partnering Initiative) unites Suppliers and Users worldwide with the aim to add to the curbing of AMR.

Read more and make your own Technology Page >>
What is going on with AMR?
Stay tuned with remarkable global AMR news and developments!