

RESEARCH ARTICLE

Using a pharmacist-led educational tool to teach elementary and middle-school students in Lebanon about microbes, antibiotic use and antimicrobial resistance: A pilot study

Katia Iskandar ^{1,2,3}, Elise Makhoul ³, Chadia Haddad ^{2,4,5}, Dalal Hammoudi ³, Sara EL Khatib¹, Ismail A. Jomha ³, Nagham Khanafer ^{6,7}, Maarten Van Dungen ⁸, Pascale Salameh ^{1,2,9}

- ¹ Department of Pharmacy, Lebanese University, Beirut, Lebanon
- ² INSPECT-LB (Institut National de Santé Publique, d'Épidémiologie Clinique et de Toxicologie-Liban), Beirut, Lebanon
- ³ School of Pharmacy, Department of Pharmaceutical Sciences, Lebanese International University, Lebanon
- ⁴ Research Department, Psychiatric Hospital of the Cross, Jal El Dib, Lebanon
- ⁵ School of Health Sciences, Modern University of Business and Science, Beirut, Lebanon
- ⁶ Edouard Herriot Hospital, Epidemiology and Infection Control Unit, Hospices Civils of Lyon, Lyon, France
- ⁷ International Centre for Infectious in Disease Research (CIRI), Lyon, France
- ⁸ AMR insights,1017 EG Amsterdam, The Netherlands
- ⁹ Department of Medicine, Nicosia University, Cyprus

Keywords

Antibiotics Antimicrobial resistance School Pharmacist-led education

Correspondence

Katia Iskandar School of Pharmacy Lebanese International University Beirut Lebanon katia.iskandar@liu.edu.lb

Abstract

Background: Teaching school students about antibiotic use and antimicrobial resistance (AMR) can shape their future behaviour to become antibiotic guardians. This study aims to assess the impact of a pharmacist-led educational tool in boosting knowledge of these topics at elementary and middle school educational stages. **Methods**: A prospective web-based cross-sectional pre-post study was conducted in Lebanese private schools from April 2020 to December 2021. **Results**: The results showed that the pharmacist-led intervention increased the general knowledge (p = 0.01) and understanding of microbes (junior versus senior, p = 0.003 versus p = 0.004). In middle school, the spread of infection (p < 0.001) and the AMR concept (p = 0.001) significantly changed post-test, while antibiotics use and AMR concept remained unchanged in elementary students. **Conclusion**: The successful learning impact of the educational tool designed and led by pharmacists shows their importance as antibiotic experts in influencing early pedagogic learning about antibiotics and AMR starting at the middle-school stage.

Introduction

Infections due to antimicrobial-resistant bacteria are a global health issue (Cassini *et al.*, 2019; Murray *et al.*, 2022), substantially affecting newborn babies, infants, and children (Balasegaram *et al.*, 2019; Murray *et al.*, 2022). Antimicrobial resistance (AMR) is a leading cause of death worldwide, with a high predilection in developing countries (Murray *et al.*, 2022). It is a documented cause of morbidity and mortality in the

pediatric age groups and a particular threat to newborn babies and premature neonates with infections due to drug-resistant bacteria (Laxminarayan & Bhutta, 2016; Balasegaram *et al.*, 2019). Children are the highest consumers of antibiotics intended mainly to treat respiratory tract infections (M Dassner *et al.*, 2017; Hsia *et al.*, 2019) predominantly of viral origin (Leung *et al.*, 2019), leading to inappropriate antibiotic use and subsequently driving AMR (WHO, 2021).

General public education about AMR is a component of the response to this crisis (Kvint, Palm, & Farewell, 2020). A scoping review assessed the impact of public education campaigns in fostering health behaviour change on AMR and showed positive results towards raising public AMR awareness and embracing positive behavioural changes to impact AMR and maintain antimicrobial viability (McParland et al., 2018; Fletcher-Miles et al., 2020). Students have repeatedly been a focus of educational activities targeting AMR, whether at post-graduate (Eveillard et al., 2016), college (Valderrama et al., 2018; Kvint, Palm, & Farewell, 2020; Antunes et al., 2021) or high school (Azevedo et al., 2009; Fonseca et al., 2012; Ambusaidi et al., 2022) levels. Plenty of reports in the literature describe effective education as a means to foster the appropriate use of antibiotics, and combat AMR, relying on surveys, oral questionnaires, and a variety of teaching modalities to address gaps in knowledge and misconceptions about the topic (Ambusaidi et al., 2022). To address the irrational use of these drugs, the focus of the educational interventions and awareness campaigns is shifting to junior (7-11 years) and senior (12-15 years) school students (Taylor et al., 2003; Cebotarenco et al., 2008; Young et al., 2017; Zhang et al., 2018) to spread awareness in this stratum of the population (Cebotarenco et al., 2008; Young et al., 2017; Zhang et al., 2018). Although published studies failed to show sustained behavioural changes toward AMR and the efficacy of this method is still debated (Fletcher-Miles et al., 2020), educating this age group about antibiotics and AMR may yield a beneficial longterm impact (Young et al., 2017; Zhang et al., 2018). Children can influence their parent's behaviors and incite them into making healthy choices (Little et al., 2015; Hayes et al., 2020).

Children's elementary knowledge of antibiotic use seems poor, despite the highest antibiotic prescription rate in this age group (Lecky *et al.*, 2010). Teaching children the concepts of microbiology, antibiotic use, hygiene, and antimicrobial resistance can shape their future behaviour to become antibiotic guardians (Lecky *et al.*, 2010; Young *et al.*, 2017; Zhang *et al.*, 2018;).

The correct dissemination of information on antibiotics enables behavioural modification toward antibiotic use. It is critical to incorporate student involvement, namely active learning, into traditional teaching to stimulate their minds and improve learning in their natural learning setting (Azevedo *et al.*, 2013). A successful example of popular educational material for school children is the European e-Bug tool based on agreed-upon learning outcomes with proven effectiveness in raising awareness and educating school children, teachers, and parents (Farrell *et al.*, 2011; Hayes *et al.*, 2020).

In Lebanon, the actual burden of AMR is not determined yet due to the lack of national surveillance data, a limited number of well-designed national studies, poor epidemiological monitoring, and a lack of proper funding, infrastructure, and governance (Osman et al., 2021). The alarming increase in AMR in Lebanon, potentially to an endemic level (Daoud, 2018), raises the voice toward better practices and purposeful education. The documented knowledge and awareness of antibiotics and AMR among the Lebanese population is low to moderate and varies according to their educational background and socio-economic status (Mouhieddine et al., 2015; Sakr et al., 2020; Henaine et al., 2021). The gap in knowledge calls for more focus on promoting nationwide awareness about the topic (Sakr et al., 2020). In 2019, the Ministry of Public Health published a national action plan to fight AMR (Mouhieddine et al., 2015) and set several awareness campaigns to address the use of antibiotics. Previous campaigns in Lebanon did not address knowledge of AMR in school children, and the educational awareness campaigns about the topic have not targeted the pediatric age groups to promote education about AMR at an early age. This study aims to assess the impact of a pharmacist-led educational interventional tool on boosting baseline knowledge and awareness about microbes, infection spread and prevention, antibiotics, and AMR.

Methods

Study design

A prospective cross-sectional pre-/post study was conducted in Lebanese private schools from April 2020 to December 2021.

Selection of schools and study participants

Elementary and middle-school students from private and public schools across Lebanon were eligible to participate in the study after obtaining the assent of their parents. The secretary of the Ministry of Education in Lebanon showed a high interest in the project but could not approve of conducting the study due to the COVID-19 pandemic and the difficulties of students' access to the online educational system. Out of 67 contacted schools from the private sector, eight responded favourably. Others schools showed high interest but decided to postpone the project for another year to avoid overwhelming the students already facing difficulties with online learning. Due to these circumstances, a pilot study was conducted (Figure 1).

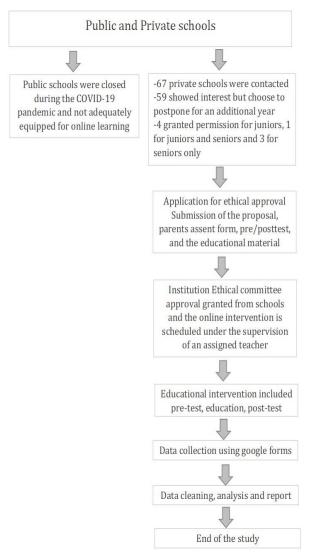


Figure 1: An overview of the study methodology

Educational tool

The two separate educational tools intended to educate school children about AMR were translated to English and French in a PowerPoint format and adapted to the junior (7 - 11 years old) and senior (12 - 15 years old) students' educational needs. The content was examined by pharmacists, school teachers, and parents and piloted with junior and senior students to address any pitfall related to the verbatim, the slide design, and the pertinence of the content. The topics covered in the educational tools were: an overview of bacteria and viruses, the role of good and bad bacteria, hand and respiratory hygiene, immunity, the use of antibiotics, an overview of the concept of AMR, and how to fight this problem.

The educational tools are available at the following link address: https://inspect-lb.org/antimicrobial-resistance/

Pre/Post-test

The pre/post questionnaire included the same questions formulated as closed-ended to simplify the process. It consisted of five sections:

- [1] introduction to microbes
- [2] the spread of infection
- [3] prevention of infection
- [4] use of antibiotic
- [5] introduction to the concept of antimicrobial resistance

The questionnaire included 24 closed-ended questions for juniors (Table I) and 38 for seniors (Table II). The questions were adapted from previously published studies (Lecky *et al.*, 2010; Fernandes *et al.*, 2019).

Table I: Descriptive of school student demographics and percentage of knowledge at baseline

Description	Junior students	Senior students
Gender	n (%)	n (%)
Male	71 (38.6%)	63 (55.3%)
Female	113 (61.4%)	51 (44.7%)
Age (Mean ± SD)	10.07 ± 1.00	12.80 ± 0.77
Knowledge at baseline		
Introduction to Microbes	82.1%	88.1%
Spread of infection	86.8%	86.6%
Prevention of infection	91.9%	94.9%
Use of antibiotics	59.1%	73.1%
Introduction to the concept of AMR	68.1%	72.6%

Table II: Comparison of correct pre- and post-test percentage scores of participating students

	Jun	Junior students			Senior students			
	Pre-test (%)	Post-test (%)	p-value	Pre-test (%)	Post-test (%)	p- value		
General knowledge	81.3	83.4	0.001	82.6	85.1	<0.001		
Introduction to Microbes	82.1	85.7	0.003	88.1	91.2	0.004		
Spread of infection	86.8	90.0	0.058	86.6	76.5	0.001		
Prevention of infection	91.9	92.7	0.228	94.9	93.9	0.402		
Use of antibiotics	59.1	62.5	0.064	73.1	74.6	0.458		
Introduction to the concept of AMR	68.1	68.1	1.000	72.6	77.4	0.001		

Educational intervention

Due to the COVID-19 pandemic, public and private schools were closed during the study period. The private schools were contacted for the first time by mail and chosen as a convenient sample. A file containing the project proposal, the pre-and post-test questions, the parent's consent form, and the educational material was submitted to the interested school's ethical board for examination and approval. After approval, the schools designated a teacher to follow up and supervise the process. The presenters of the project were either a pharmacist with teaching experience or a newly graduated pharmacist. The duration of the educational session per age group was 50 minutes conducted online, including the pre-test (15 minutes) followed by the teaching session (20 minutes) and a post-test (15 minutes). The pre/post-test was done via google forms and mandated the help and supervision of the parents and the teacher for juniors (7 - 11 years old). The presence of the parents was highly encouraged.

Statistical analysis

The IBM SPSS software version 25 was used to perform the data analysis. The pre/post-test analysis was undertaken for elementary and middle schools. The descriptive analysis considered the categorical variables expressed as absolute frequencies and percentages and quantitative variables as means and standard deviations. The comparison of means pre- and post-educational intervention was performed using the non-parametric tests of the Wilcoxon signed-rank test since the assumption of normality was not normally distributed (p-value of the Shapiro-Wilk test < 0.05). For each question, Wilcoxon signed Rank and Kruskal-Wallis tests were applied to analyze the pre-and posttest responses of students. The overall percentage of correct answers was computed as (Sum of students with correct answers from schools/Total number of participating students) × 100. A repeated measure ANOVA was performed to evaluate the change in knowledge after the intervention, adjusted for age and gender. Secondary data was created that included information from the previous two datasets to undertake the multivariate analysis. A multivariate analysis of covariance (MANCOVA) was used to compare the increase in knowledge between being a junior/senior student taking into account the following confounding variables: age, gender, and school level. A *p*-value less than 0.05 was considered significant.

Results

Of the eight private schools covered, four were elementary schools, one elementary and middle school, and one middle school (Figure 1). The enrolled junior students were 184 with a mean age of 10.07 ± 1.00 years with a majority of girls (61.4%) and 114 senior students with a mean age of 12.80 ± 0.77 years with a small majority of boys (55.3%). Baseline knowledge evaluation about microbes and the prevention of bacterial infection was above 50% (n = 33), while knowledge about the concept of anti-microbial resistance (68.1% versus 73.1%) was below 75% in both age groups (juniors versus seniors) (Table I).

A significant improvement in the general knowledge (p = 0.001), and introduction to microbes (junior versus seniors, p = 0.003, and p = 0.004) is noted post-test among participants from both age groups. In senior students, knowledge about the spread of infection and the concept of AMR significantly increased (p = 0.001) (Table II).

In senior students, questions related to the prevention of infection remain unchanged. The pre-and post-test percentage scores of correct and incorrect answers among participating students are detailed per question and section (Table IIIA). The percentage of correct answers remains unchanged post-test in junior students regarding the prevention of infection, and introduction to the concept of AMR (Table IIIB).

Table IIIA: Comparison of pre- and post-percentage scores among senior students

troductio	on to microbes	Test	Correct (%)	Incorrect (%)	<i>p</i> -valu
Q1	Bacteria and viruses are invisible	Pre	70	30	0.273
-		Post	74	26	
Q2	You need a microscope to see the bacteria and the viruses	Pre	100	0	1
		Post	99	1	
Q3	Bacteria and Viruses are the same size	Pre	91	9	0.003
		Post	81	19	0.003
Q4	Bacteria are found in the water, air and soil	Pre	94	6	0.096
	2000.00 00 000.00 000.00 000.00	Post	97	3	
Q5	Bacteria are found on animals	Pre	97	3	1
	Bucteria are round on animals	Post	97	3	
Q6	Bacteria are found on plants	Pre	83	17	0.021
Q0	bacteria are found on plants	Post	89	11	0.021
Q7	Bacteria are found on our hands	Pre	97	3	0.414
Q/	Bacteria are round on our manus	Post	95	5	0.414
00	Bacteria are found in our mouth	Pre	86	14	0.013
Q8	Bacteria are found in our mouth	Post	94	6	0.013
00	De desire que forma din somitatoritico	Pre	77	23	0.005
Q9	Bacteria are found in our intestines	Post	87	13	0.005
		Pre	94	6	
Q10	Bacteria are found on our skin	Post	99	1	0.059
		Pre	94	6	
Q11	There are good and harmful bacteria	Post	96	4	0.157
		Pre	89	11	
Q12	Good Bacteria can help us grow and stay in good health	Post	94	6	0.109
		Pre	84	16	
Q13	Good Bacteria can help making food like yogurt	Post	91	9	0.108
		Pre	85	15	
Q14	Good Bacteria can help the plants to grow	Post	88	12	0.346
read of	infection	. 030			
or caa or	THE COLONIA	Pre	93	21	
Q15	Harmful Bacteria can spread by shaking hands	Post	104	10	0.002
		Pre	108	6	
Q16	Harmful Bacteria can spread by sneezing or coughing	Post	108	6	1
	Harmful Pactoria can spread by touching chicate and surfaces	Pre	110	4	
Q17	Harmful Bacteria can spread by touching objects and surfaces without washing our hands	Post	110	4	1
		Pre	35	79	
Q18	Bacteria can survive on surfaces	Pre	35 56	79 58	<0.00
Q19	Viruses can only survive on surfaces	Pre	57 50	57 56	0.882
	and tenderables	Post	58	56	
evention	n of infection		00		
Q20	We should always wash our hands before and after eating	Pre	99	1	0.083
	·	Post	97	3	
Q21	We should always wash our hands after a sport activity	Pre	98	2	0.083
- "	,	Post	96	4	0.003
Q22	We should always wash our hands after going to the toilet	Pre	98	2	0.317
~	The same and a same as the same to the touch	Post	98	2	0.317
Q23	We should always wash our hands when we touch a pet like cat or	Pre	94	6	1
	dog	Post	94	6	

Introduction to microbes		Test	Correct (%)	Incorrect (%)	<i>p</i> -value
Q24	If we are sick, sneezing into a tissue can stop bacteria	Pre	86	16	0.67
QZT	we are sick, sheezing into a cissue can stop succent	Post	88	14	0.07
Q25	Our body can fight bad bacteria through the immune system	Pre 95 5	0.206		
QZJ	Our body can right bad bacteria through the minute system	Post	93	9	0.200
Use of ant	ibiotics				
Q26	Antibiotics can help our body fight the bacteria	Pre	100	0	0.034
QZ0	Antibiotics can help our body light the bacteria	Post	94	6	0.034
027	Austiniasias kill austaus tha haatauis	Pre	88	12	0.467
Q27	Antibiotics kill or stop the bacteria	Post	90	10	0.467
030	Austria in Itili vivosa	Pre	33	67	0.000
Q28	Antibiotics kill viruses	Post	40	60	0.088
Introduction	on to the concept of AMR				
		Pre	65	35	0.857
Q29	If you have cold or flu you should not take antibiotics	Post	66	34	
		Pre	93	7	0.096
Q30	You should take an antibiotic only if the doctor say so	Post	97	3	
	You should NOT stop the antibiotic when you feel better but only	Pre	95	5	_
Q31	if the doctor say so	Post	94	6	1
000	Antibiotic resistance means that harmful bacteria are stronger	Pre	63	37	
Q32	than antibiotics	Post	77	23	0.009
000	Antibiotic resistance means that antibiotics will not work and you	Pre	53	47	
Q33	cannot make you better	Post	66	34	0.037
		Pre	76	24	
Q34	Wrong use of antibiotics lead to antibiotic resistance	Post	89	11	0.003
		Pre	84	16	
Q35	Wrong use of antibiotic can make harmful bacteria win	Post	93	7	0.05
		Pre	77	23	
Q36	We can all help to stop antibiotic resistance	Post	82	18	0.162
	Only doctors and pharmacist can protect antibiotic and keeping	Pre	72	28	
Q37	them stronger than bacteria	Post	19	81	0.033
		Pre	94	6	
Q38	You can help antibiotic win if you listen to your doctor	Post	94	6	0.763

Table IIIB: Comparison of pre- and post-percentage scores among junior students

Introdu	ction to microbes	Test	Correct (%)	Incorrect (%)	<i>p</i> -value
Q1	If you cannot soo the hactoria, it does not exist	Pre	85	15	0.346
Qı	If you cannot see the bacteria, it does not exist	Post	87	13	0.340
O2 Bacteria and Viruses are the same size	Pre	84	84 16	-0.001	
Ų2	Q2 Bacteria and Viruses are the same size	Post	80	20	<0.001
02	There are good and had bestorie	Pre	91	9	0.022
Q3	There are good and bad bacteria	Post	96	4	0.033
0.4	Destante that live in a wintertimes and on a walkings are allocatories	Pre	70	30	0.274
Q4	Bacteria that live in our intestines and on our skin are good bacteria	Post	74	26	0.274
0.5	Cood hastoria and halo gradura food	Pre	75	25	0.000
Q5 Good b	Good bacteria can help produce food	Post	85	15	0.003
		Pre	82	18	
Q6	Good bacteria can help plants grow	Post	89	11	0.012

Introdu	action to microbes	Test	Correct (%)	Incorrect (%)	<i>p</i> -value
Q7	Good bacteria can help us stay in good health. They can help us grow	Pre Post	85 87	15 13	0.394
Snread	of infection	FUSI	67	13	
эргсаа	of infection	Pre	80	20	
Q8	Bad Bacteria can spread by shaking hands	Post	83	17	0.433
		Pre 82 14	14		
Q9	Bad Bacteria can spread in the air by sneezing or coughing	Post	94	6	0.011
010	Bad Bacteria can spread by touching objects and surfaces without	Pre	92	8	0.254
Q10	washing our hands	Post	95	5	0.251
Preven	tion of infection				
011	We should always week our hands before cating	Pre	99	1	0.10
Q11	We should always wash our hands before eating	Post	98	2	0.18
012	We should always wash our hands ofter esting	Pre	96	4	0.417
Q12	We should always wash our hands after eating	Post	98	2	0.414
Q13	We should always wash our hands after going to the toilet	Pre	96	4	0.157
Q13	We should always wash our hands after going to the toilet	Post	98	2	
014	We should always wash our hands when we arrive at home after	Pre	99	1	0.56
Q14	school	Post	99	1	0.564
Q15	We should always wash our hands when we touch a pet like cat or	Pre	98	2	0.414
QIJ	dog	Post	99	1	0.412
Q16	Soan and water can help remove hacteria and virus	Pre	92	8	0.253
Q10	Soap and water can help remove bacteria and virus	Post	94	6	0.25
Q17	If we are sick, sneezing into a tissue can stop bacteria	Pre	71	29	0.27
Q17	ii we are sick, sheezhig iiito a tissue can stop bacteria	Post	75	25	0.272
Q18	Our body is strong and can fight bad bacteria	Pre	84	16	0.317
Q10	Our body is strong and carring it bad bacteria	Post	82	18	0.517
Use of	antibiotics				
Q19	Antibiotics can help our body fight the bacteria	Pre	92	8	0.033
QIS	Antibiotics can help our body light the bacteria	Post	96	4	0.033
Q20	Antibiotics kill viruses	Pre	62	38	1
رک	A THE STOCKES WITH VITAGES	Post	38	62	
Q21	If you have cold or flu you should not take antibiotics	Pre	46	54	0.199
~	, ou have sold of the you should not take untillioned	Post	51	49	5.13.
ntrodu	action to the concept of AMR				
Q22	Antibiotic resistance means that Bad bacteria are stronger than	Pre	56	44	0.777
Q22	antibiotics	Post	54	46	0.777
Q23	Antibiotic resistance means that antibiotic are not working	Pre	54	46	0.68
Q23	anymore. They cannot make us better	Post	56	44	0.00
Q24	We can all help antibiotics win by listening to the doctor and to our	Pre	95	5	0.527
Q24	parents	Post	94	6	0.527

Repeated measure ANOVA

A repeated-measures ANOVA was done among junior and senior answers databases to determine if there were any changes in knowledge between time points. The results among junior participants showed a statistically

significant increase in general knowledge (M pre-test = $81.35 \ versus$ M post-intervention =83.56; p = 0.001) and introduction to microbes (M pre-test = $82.04 \ versus$ M post-test = 85.79; p = 0.002) from baseline to post-interventions. No significant change was found for the other sections (Figure 2).

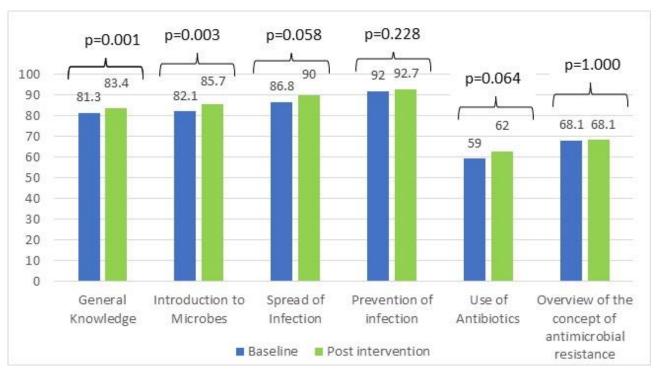


Figure 2: Changes in knowledge from baseline to post-intervention among junior students adjusted for age and gender

The results among senior students showed a statistically significant increase in general knowledge ($M_{pretest}$ =82.64 vs $M_{post-test}$ =85.13; p=0.002), introduction to microbes ($M_{pretest}$ =88.09 vs $M_{post-test}$ =91.22; p=0.006), the spread of infection ($M_{pretest}$ =70.70 vs $M_{post-test}$ =76.49; p=0.001) and overview of the

concept of antimicrobial resistance ($M_{pretest}$ =72.63 vs $M_{post-test}$ =77.36; p=0.001) from baseline to post-interventions. No significant change was found in the prevention of infection and the use of antibiotics sections (Figure 3).

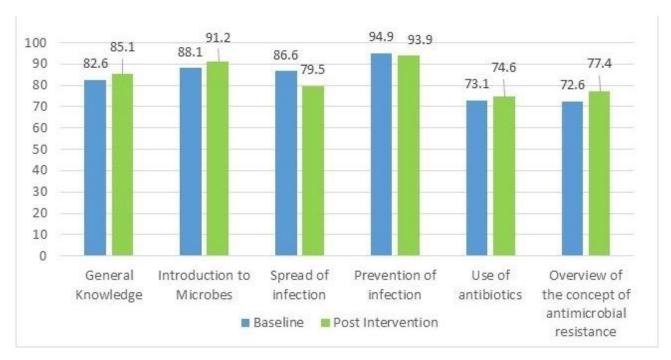


Figure 3: Changes in knowledge from baseline to post-intervention among Senior students adjusted for age and gender

Multivariable analysis

The authors carried out the MANCOVA analysis by taking the increase in knowledge as the dependent variable and being a junior/senior student as the independent variable, adjusting for the covariates (age and gender). The results showed that the increase in general knowledge and knowledge about microbes, the spread, and prevention of infection, antibiotics use, and the concept of AMR found was not associated with age, gender, or being a junior or senior student (*p*>0.05 for all) (Appendix A).

Discussion

This study is the first in Lebanon to teach junior and senior school students about microbes, hand and respiratory hygiene, antibiotics use, and AMR using an age-appropriate educational tool. Results show that pre-test knowledge about antibiotic use and AMR is low in elementary and middle-school students (less than 75%) (Barua et al., 2013), a finding previously documented in the literature (Lecky et al., 2010; Lecky et al., 2011; Azevedo et al., 2013; Appiah et al., 2022). On the other hand, the pre-test knowledge about microbes and the spread and prevention of infection was high (above 75%) in both age groups. The pharmacist's contribution in increasing awareness about infection spread and prevention during the pandemic and the recommended presence of parents during the educational session have contributed to enhancing the knowledge of school students about these topics.

General knowledge about the topic

The findings indicate that the educational intervention significantly improved the general knowledge in both age groups (p < 0.001). Multiple studies have highlighted the importance of educational tools in shaping behaviours and educating school children, youth, teachers, and parents (Lecky et al., 2011; Touboul et al., 2011; Brito Avô et al., 2011; Gennimata et al., 2011; Rodríguez et al., 2011; Holt et al., 2011; De Castro et al., 2013; Lee et al., 2015; Appiah et al., 2022). The e-Bug project is a successful example of an educational tool about these topics implemented in 29 countries and translated into 27 languages (Lecky et al., 2011; Touboul et al., 2011; Brito Avô et al., 2011; Gennimata et al., 2011; Rodríguez et al., 2011; Holt et al., 2011; De Castro et al., 2013; Lee et al., 2015; Appiah et al., 2022) that gained high acceptance among teachers and school children and have proven effective in raising awareness about the topic.

Introduction to microbes

The knowledge about microbes has significantly increased among participants (junior versus seniors, p=0.003 vs p=0.004) post-test. Results show that although the pretest knowledge about the topic was high (>80%), the education has improved the understanding of the good bacteria concept in juniors and the idea about bacteria found on plants, in the mouth, and intestines in senior students as noted post-test

The spread of infection

Knowledge about the spread of infection is enhanced among junior and senior students (p=0.001). The comparison of answers pre-and post-test shows that the spread of bacteria by sneezing or coughing significantly changed post-test in juniors. In seniors, a significant improvement was noted in the knowledge post-test about the presence of bacteria on surfaces and the spread of bacteria by shaking hands. Previous studies also showed that students were unaware of bacteria on door handles and other surfaces such as desks and cell phones (Lecky et al., 2010; Gawai et al., 2016; Fernandes et al., 2019).

Prevention of infection

The high levels of pre-test knowledge in both age groups (> 90%) about the prevention of infection may be one of the beneficial impacts of the pandemic, in that, awareness was spread about the importance of hand hygiene and the incorporation of this topic into the school curriculum. Previous studies highlighted the role of training in schools in enhancing knowledge and fostering appropriate behaviour toward infection prevention among students (De Castro et al., 2013; Little et al., 2015; Young et al., 2019; Fernandes et al., 2019). Studies conducted in Sub-Saharan Africa and southwest England used AMR-themed PowerPoint animations to improve students' knowledge of infections (Lecky et al., 2011; Touboul et al., 2011; Young et al., 2019; Appiah et al., 2022). Interventions tackling hand, respiratory and dental hygiene should be part of the school's curriculum or ongoing extracurricular activities.

Antibiotic use and antimicrobial resistance

In this study, the lack of improvement in knowledge about antibiotic use and AMR noted in juniors may be related to the need for a different learning style (Lecky $et\ al.$, 2011) and the difficulty of understanding this topic at this age. The educational tool helped to improve knowledge about antibiotic use to help the human body fight bacteria (juniors versus seniors, p =

0.033 versus p = 0.034). A recent survey of school educational curricula conducted in Europe and Palestine pointed to the variation of antibiotic education across different countries and the lack of education on the topic for children eleven years and below (Hayes et al., 2020). A study conducted in Moldova showed the usefulness of student-taught programmes in reducing antibiotic use intended to treat colds and flu (Cebotarenco et al., 2008). The findings from this study suggest that introducing the concept of antibiotics use, knowledge about microbes, the spread, and prevention of infection may be a good starting point in elementary schools, followed by an introduction to the concept of AMR later in middleschool levels (Fonseca et al., 2012; Hayes et al., 2020; Azevedo et al., 2022). Similar studies conducted in different European countries showed that awareness of AMR significantly improved post-teaching intervention (Fonseca et al., 2012; Fernandes et al., 2019; Hayes et al., 2020; Appiah et al., 2022). Pedagogic inclusion of antibiotics and AMR in the education modules of the school's curriculum is strongly encouraged to shape behaviors about antibiotic use and enhance awareness about AMR (Hayes et al., 2020).

Limitations of this study are the small sample size of participating schools and the lack of representativeness of public schools. The limited number of participating schools was due to the lockdown regulations during the COVID-19 pandemic and the complex access to online teaching tools. Students and parents struggled with manipulating these tools, predominantly when taking the pre/post-test via Google Forms. The lack of direct contact and interactive sessions was also a limitation in boosting the interest, focus, and understanding of participants from different age groups. The number of participants, in addition to the limited number of questions tackling the use of antibiotics, may have contributed to the lack of significant improvement in knowledge detected in seniors and juniors.

Future directions

This study highlighted the pharmacist's role as a medication and public health expert in conceptualising, designing, and leading interactive educational tools and other types of educational activities (video games, games, live experiments, etc) that target different health-related topics to enhance knowledge of all age groups.

Overall, this pharmacist-led educational tool effectively enhanced the general knowledge of middle and elementary school students. The questions analysis highlighted the need to review and set separate age-appropriate educational tools that focus on antibiotics for both age groups and AMR starting at the level of

middle school. Undertaking a pre-test assessment of the related topics covered in the schools' curricula is advised. The results of this study can orientate the adaptation and modification of the educational tool content and design. The ultimate aim is to introduce the concept of antibiotics and AMR at a younger age to appropriate behaviours and knowledgeable generation. Additional recommendations include limiting the educational intervention to 15 minutes and reviewing the test questions concerning the obtained results and their importance in determining the level of acquired knowledge. A cross-disciplinary collaboration on the topics is highly recommended, involving for example child psychotherapists, pedagogic social workers, school teachers, and the child's carer.

Conclusion

The educational tool succeeded in enhancing the knowledge of middle school students about antibiotic use and AMR, highlighting the importance of pharmacist-led educational interventions at an early pedagogic level to prepare future antibiotic guardians.

Ethical approval and consent to participate

The study protocol was approved by the Lebanese International University ethics committee under the number 2020RC-059-LIUSOP. Prior to answering the online questionnaire, participants were informed of the study objectives. Parents gave their consent to enrol their children in the study.

Availability of data and materials

Raw data are available at the INSPECT-Lb data repository.

Link: https://inspect-lb.org/using-an-educational-tool-to-teach-elementary-and-middle-school-students-in-lebanon-about-microbes-antibiotic-use-and-antimicrobial-resistance-a-pilot-study/

Competing interests

The authors declare no conflict of interest.

Authors contribution

KI contributed to the conception and design of the study, the supervision of the research and drafted the manuscript. PS participated in the design of the study, supervised the research, planned and supervised the statistical analysis. CH performed the statistical analysis and wrote the results. DH supervised the execution of the survey and helped to draft the manuscript. EM conducted the survey and the educational sessions and helped drafting the manuscript. IJ carried out the survey and the educational sessions and revised the manuscript. SK contributed to the design of the educational tool, and revised the manuscript. MVD and NK contributed to the design of the study and revised the manuscript. All authors read the manuscript and approved the final manuscript.

Acknowledgements

The authors would like to thank the following schools for their participation in the study: École Besançon (Mount Lebanon), École de saint enfant Jésus (Mount Lebanon), Khaled bin Al-Walid- Al Horj college (Beirut), Al Thanaa school (Beqaa), Baaloul school (Beqaa).

References

Ambusaidi, A., Taylor, N., Quinn, F., Rizk, N., & Taylor, S. (2022). Omani senior secondary school students' knowledge of and attitudes to antibiotic resistance. *PloS one*, **17**(2)

Antunes, P., Novais, C., Novais, Â., Grosso, F., Ribeiro, T. G., Mourão, J., Perovic, S.U., Rebelo, A., Ksiezarek, M., Freitas, A.R. & Peixe, L. (2021). MicroMundo@ UPorto: an experimental microbiology project fostering student's antimicrobial resistance awareness and personal and social development. *FEMS Microbiology Letters*, **368**(4). https://doi.org/10.1093/femsle/fnab016

Appiah, B., Asamoah-Akuoko, L., Samman, E., Koduah, A., Kretchy, I.A., Ludu, J. Y., Odonkor, G., Nam, S.H., & Gyansa-Luterrodt, M. (2022). The impact of antimicrobial resistance awareness interventions involving schoolchildren, development of an animation and parents engagements: a pilot study. *Antimicrobial resistance and infection control*, **11**(1), 26. https://doi.org/10.1186/s13756-022-01062-6

Azevedo, M.M., Pinheiro, C., Yaphe, J., & Baltazar, F. (2009). Portuguese students' knowledge of antibiotics: a cross-sectional study of secondary school and university students in Braga. *BMC Public Health*, **9**(1), 1-6

Azevedo, M.M., Pinheiro, C., Yaphe, J., & Baltazar, F. (2013). Assessing the impact of a school intervention to promote students' knowledge and practices on correct antibiotic use.

International Journal of Environmental Research and Public Health, **10**(7), 2920-2931

Balasegaram, M., Pécoul, B., Gray, G., Sharland, M., & Swaminathan, S. (2019). Hard to study, hard to treat: putting children at the centre of antibiotic research and development. *Lancet. Infectious Diseases*, **19**(6), 573-574

Barua, A., Kademane, K., Gubbiyappa, K.S., Verma, R.K., Iqbal, M.S., & Al-Dubai, S.A.R. (2013). A tool for decision-making in norm-referenced survey questionnaires with items of continuous variables. *Journal of Asian Scientific Research*, **3**(11), 1109-1118

Brito Avô, A., Costa, C., Amann, G., Gaspar, M.J., & Batista, I. (2011). Implementation of the e-Bug Project in Portugal. Journal of antimicrobial chemotherapy, 66(suppl_5), v81-v83

Cassini, A., Högberg, L.D., Plachouras, D., Quattrocchi, A., Hoxha, A., Simonsen, G.S., Colomb-Cotinat, M., Kretzschmar, M.E., Devleesschauwer, B., Cecchini, M., Ouakrim, D.A., Oliveira, T.C., Struelens, M.J., Suetens, C., Monnet, D.L. & Hopkins, S. (2019). Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. *The Lancet infectious diseases*, **19**(1), 56-66

Cebotarenco, N., & Bush, P.J. (2008). Reducing antibiotics for colds and flu: a student-taught program. *Health education research*, **23**(1), 146-157

Daoud, Z. (2018). Antimicrobial Resistance in the One Health Concept in Lebanon. *Journal of Infection in Developing Countries*, **12**(2), 2S

Dassner, A. M., Nicolau, D. P., & Girotto, J. E. (2017). Management of Pneumonia in the Pediatric Critical Care Unit: An Area for Antimicrobial Stewardship. *Current pediatric reviews*, **13**(1), 49–66. https://doi.org/10.2174/1573396312666161205102221

De Castro, P., Barbaro, M.C., Salinetti, S., Carinci, A., Pantosti, A., Lecky, D.M., Hawking, M.K.D., & McNulty, C.A. (2013). Information and health literacy for school students: the e-Bug experience in Italy. *Journal of the European Association for Health Information and Libraries*, **9**(1), 8

Eveillard, M., Ruvoen, N., Lepelletier, D., Fradet, S., Couvreur, S., Krempf, M., & Magras, C. (2016). Integration of microbiology and infectious disease teaching courses in an interdisciplinary training programme (Master level) centred on the 'One world, one health' WHO concept. *FEMS Microbiology Letters*, **363**(9), fnw068

Farrell, D., Kostkova, P., Lazareck, L., Weerasinghe, D., Weinberg, J., Lecky, D.M., Adraenssens, N., Herotova, T.K., Holt, J., Touboul, P., Merakou, K., Koncan, R., Olczak-Pienkowska, A., Avo, A.B., Campos, J., & McNulty, C.A.M. (2011). Developing e-Bug web games to teach microbiology. *Journal of Antimicrobial Chemotherapy*, **66**(suppl_5), v33-v38. https://doi.org/10.1093/jac/dkr121

Fernandes, R., Naik, S., Bhat, A. G., Shetty, R., Hande, M. H., Ghafur, A., Rao, M., Kunhikatta, V., & Pathiraj, J. P. (2019). Knowledge Assessment of E-Bug Assisted Antimicrobial Resistance Education Module in Class VII School Students of

South Indian Coastal Town of Manipal. *Journal of clinical medicine*, **8**(1), 84. https://doi.org/10.3390/jcm8010084

Fletcher-Miles, H., Gammon, J., Williams, S., & Hunt, J. (2020). A scoping review to assess the impact of public education campaigns to affect behavior change pertaining to antimicrobial resistance. *American Journal of Infection Control*, **48**(4), 433-442

Fonseca, M.J., Santos, C.L., Costa, P., Lencastre, L., & Tavares, F. (2012). Increasing awareness about antibiotic use and resistance: a hands-on project for high school students. *PloS one*, **7**(9). https://doi.org/10.1371/journal.pone.0044699

Gawai, P.P., Taware, S.A., Chatterjee, A.S., & Thakur, H.P. (2016). A cross sectional descriptive study of hand washing knowledge and practices among primary school children in Mumbai, Maharashtra, India. *International Journal of Community Medicine and Public Health*, **3**(10), 2958-2966

Gennimata, D., Merakou, K., Barbouni, A., & Kremastinou, J. (2011). Implementation of the e-Bug Project in Greece. Journal of Antimicrobial Chemotherapy, **66**(suppl_5), v71-v73

Hayes, C., Young, V., Brown, C., Touboul Lundgren, P., Gennimata, D., Holt, J., Weisheit, E., Rico, A., Garcia, C., De Castro, P., & McNulty, C.A.M. (2020). International promotion of e-Bug, an infection prevention and control educational intervention: survey of partners across 14 countries. *JAC-antimicrobial resistance*, **2**(1). https://doi.org/10.1093/jacamr/dlaa003

Henaine, A.M., Lahoud, N., Abdo, R., Shdeed, R., Safwan, J., Akel, M., Fahs, I., Zeenny, R., Sacre, H., Hallit, S., & Salameh, P. (2021). Knowledge of Antibiotics Use among Lebanese Adults: A study on the influence of sociodemographic characteristics. *Sultan Qaboos University medical journal*, **21**(3), 442–449. https://doi.org/10.18295/squmj.4.2021.006

Holt, J., & Jensen, U.S. (2011). Implementation of e-Bug in Denmark. *Journal of antimicrobial chemotherapy*, **66**(suppl_5), v59-v62

Hsia, Y., Sharland, M., Jackson, C., Wong, I.C., Magrini, N., & Bielicki, J.A. (2019). Consumption of oral antibiotic formulations for young children according to the WHO Access, Watch, Reserve (AWaRe) antibiotic groups: an analysis of sales data from 70 middle-income and high-income countries. *The Lancet Infectious Diseases*, **19**(1), 67-75

Kvint, K., Palm, M., & Farewell, A. (2020). Teaching about antibiotic resistance to a broad audience: A multidisciplinary approach. *FEMS microbiology letters*, **367**(14), fnaa111

Laxminarayan, R., & Bhutta, Z.A. (2016). Antimicrobial resistance—a threat to neonate survival. *The Lancet Global Health*, **4**(10), e676-e677

Lecky, D.M., McNulty, C.A., Adriaenssens, N., Herotová, T.K., Holt, J., Kostkova, P., Merakou, K., Koncan, R., Olczak-Pienkowska, A., Avo, A.B., Campos, J., Farrel, D., Touboul, P., Barbouni, N., Benes, J., Caballero, C.R., Cornaglia, G., De Corte, S., de Quincey, E., Dellamonica, P., Gennimata, D., Goossens, H., Grzesiowski, P., Kremastinou, J., Noer, M., & Weinberg, J. (2011). Development of an educational resource on microbes, hygiene and prudent antibiotic use

for junior and senior school children. *Journal of Antimicrobial Chemotherapy*, **66**(suppl_5), v23-v31

Lecky, D.M., McNulty, C.A., Touboul, P., Herotova, T.K., Benes, J., Dellamonica, P., Verlander, N.Q., Kostkova, P., Weinberg, J., & e-Bug Working Group (2010). Evaluation of e-Bug, an educational pack, teaching about prudent antibiotic use and hygiene, in the Czech Republic, France and England. *The Journal of Antimicrobial Chemotherapy*, **65**(12), 2674–2684. https://doi.org/10.1093/jac/dkq356

Lee, C.R., Lee, J.H., Kang, L.W., Jeong, B.C., & Lee, S.H. (2015). Educational effectiveness, target, and content for prudent antibiotic use. *BioMed research international*, **2015**, 214021. https://doi.org/10.1155/2015/214021

Leung, A.K., Wong, A.H., Leung, A.A., & Hon, K.L. (2019). Urinary tract infection in children. *Recent patents on inflammation & allergy drug discovery*, **13**(1), 2-18

Little, P., Stuart, B., Hobbs, F.D., Moore, M., Barnett, J., Popoola, D., Middleton, K., Kelly, J., Mullee, M., Raftery, J., Yao, G., Carman, W., Fleming, D., Stokes-Lampard, H., Williamson, I., Joseph, J., Miller, S., & Yardley, L. (2015). An internet-delivered handwashing intervention to modify influenza-like illness and respiratory infection transmission (PRIMIT): a primary care randomised trial. *Lancet*, **386**(10004), 1631–1639. https://doi.org/10.1016/S0140-6736(15)60127-1

McParland, J.L., Williams, L., Gozdzielewska, L., Young, M., Smith, F., MacDonald, J., Langdridge, D., Davis, M., Price, L., & Flowers, P. (2018). What are the 'active ingredients' of interventions targeting the public's engagement with antimicrobial resistance and how might they work?. *British journal of health psychology*, **23**(4), 804–819. https://doi.org/10.1111/bjhp.12317

Mouhieddine, T.H., Olleik, Z., Itani, M.M., Kawtharani, S., Nassar, H., Hassoun, R., Houmani, Z., El Zein, Z., Fakih, R., Mortada, I.K., Mohsen, Y., Kanafani, Z., & Tamim, H. (2015). Assessing the Lebanese population for their knowledge, attitudes and practices of antibiotic usage. *Journal of infection and public health*, **8**(1), 20–31. https://doi.org/10.1016/j.jiph.2014.07.010

Murray, C.J., Ikuta, K.S., Sharara, F., Swetschinski, L., Aguilar, G.R., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S.C., Browne, A.J., Chipeta, M.C., Fell, F., Hackett, S., Haines-Woodhouse, G., Hamadani, B.H.K., Kumaran, E.A.P., McManigal, B., Achalapong, S., Agarwal, R., Akech, S., Albertson, S., Amuasi, J., Andrews, J., Aravkin, A., Ashley, E., Babin, F-.X., Bailey, F., Baker, S., Basnyat, B., Bekker, A., Bender, R., Berkley, J.A., Bethou, A., Bielicki, J., Boonkasidecha, S., Bukosia, J., Carvalheiro, C., Castañeda-Orjuela, C., Chansamouth, V., Chaurasia, S., Chiurchiù, S., Chowdhury, F., Donatien, R.C., Cook, A.J., Cooper, B., Cressey, T.R., Criollo-Mora, E., Cunningham, M., Darboe, S., Day, N.P.J., De Luca, M., Dokova, K., Dramowski, A., Dunachie, S.J., Bich, T.D., Eckmanns, T., Eibach, D., Emami, A., Feasey, N., Fisher-Pearson, N., Forrest, K., Garcia, C., Garrett, D., Gastmeier, P., Giref, A.Z., Greer, R.C., Gupta, V., Haller, S., Haselbeck, A., Hay, S.I., Holm, M., Hopkins, S., Hsia, Y., Iregbu, K.C., Jacobs, J., Jarovsky, D., Javanmardi, F., Jenney, A.W.J., Khorana, M., Kissoon, N., Kobeissi, E., Kostyanev, T., Phommasone, K., Khusuwan, S., Krapp, F., Krumkamp, R., Kumar, A., Kyu, H.H., Lim, C., Lim, K., Limmathurotsakul, D., Loftus, M.J., Lunn, M., Ma, J.,

Manoharan, A., Marks, F., May, J., Mayxay, M., Mturi, N., Munera-Huertas, T., Musicha, P., Musila, L.A., Mussi-Pinhata, M.M., Naidu, R.N., Nakamura, T., Nanavati, R., Nangia, S., Newton, P., Ngoun, C., Novotney, A., Nwakanma, D., Obiero, C.W., Ochoa, T.J., Olivas-Martinez, A., Olliaro, P., Ooko, E., Ortiz-Brizuela, E., Ounchanum, P., Pak, G.D., Paredes, J.P., Peleg, A.Y., Perrone, C., Phe, T., Plakkal, N., Ponce-de-Leon, A., Raad, M., Ramdin, T., Rattanavong, S., Riddell, A., Roberts, T., Robotham, J.V., Roca, A., Rosenthal, V.D., Rudd, K.E., Russell, N., Sader, H.S., Saengchan, W., Schnall, J., Scott, J.A.G., Seekaew, S., Sharland, M., Shivamallappa, M., Sifuentes-Osornio, J., Steenkeste, A.J.S.N., Stewardson, A.J., Stoeva, T., Tasak, N., Thaiprakong, A., Thwaites, G., Tigoi, C., Turner, C., Turner, P., van Doorn, H.R., Velaphi, S., Vongpradith, A., Vongsouvath, M., Vu, H., Walsh, T., Walson, J.L., Waner, S., Wangrangsimakul, T., Wannapinij, P., Wozniak, T., Young-Sharma, T.E.M.W., Yu, K.C., Zheng, P., Sartorius, B., Lopez, A.D., Stergachis, A., Moore, C., Dolecek, C. & Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325), 629-655

Osman, M., Kasir, D., Kassem, I.I., & Hamze, M. (2021). Shortage of appropriate diagnostics for antimicrobial resistance in Lebanese clinical settings: a crisis amplified by COVID-19 and economic collapse. *Journal of Global Antimicrobial Resistance*, **27**, 72

Rodríguez, C., González, E., García, A., & Campos, J. (2011). Implementation of the e-Bug Project in Spain. *Journal of antimicrobial chemotherapy*, **66**(suppl_5), v85-v87

Sakr, S., Ghaddar, A., Hamam, B., & Sheet, I. (2020). Antibiotic use and resistance: An unprecedented assessment of university students' knowledge, attitude and practices (KAP) in Lebanon. *BMC Public Health*, **20**(1), 1-9

Taylor, J.A., Kwan-Gett, T.S.C., & McMahon Jr, E.M. (2003). Effectiveness of an educational intervention in modifying

parental attitudes about antibiotic usage in children. *Pediatrics*, **111**(5), e548-e554

Touboul, P., Dunais, B., Urcun, J.M., Michard, J.L., Loarer, C., Azanowsky, J.M., Vincent, I., Jestin, C., Housseau, B., de Warren, A. & Dellamonica, P. (2011). The e-Bug project in France. *Journal of antimicrobial chemotherapy*, **66**(suppl_5), v67-v70

Valderrama, M.J., González-Zorn, B., de Pablo, P.C., Díez-Orejas, R., Fernández-Acero, T., Gil-Serna, J., de Juan, L., Martin, H., Molina, M., Navarro-Garcia, F., Patino, B., Pla, J., Prieto, D., Rodriguez, C., Roan, E., Sanz-Santamaria, A.B., de Siloniz, M.I., Suarez, M., Vazquez, C., & Cid, V.J. (2018). Educating in antimicrobial resistance awareness: adaptation of the Small World Initiative program to service-learning. *FEMS microbiology letters*, **365**(17), fny161. https://doi.org/10.1093/femsle/fny161

WHO (World Health Organisation). (2021) Antimicrobial resistance. Available from: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance

Young, V. L., Cole, A., Lecky, D. M., Fettis, D., Pritchard, B., Verlander, N. Q., Eley, C. V., & McNulty, C. A. M. (2017). A mixed-method evaluation of peer-education workshops for school-aged children to teach about antibiotics, microbes and hygiene. *The Journal of antimicrobial chemotherapy*, **72**(7), 2119–2126. https://doi.org/10.1093/jac/dkx083

Zhang, Y., Kabba, J., Chang, J., Ji, W., Zhu, S., Yu, J., Xu, S., & Fang, Y. (2018). A School-Based Educational Intervention for School-Aged Children and Caregivers about Rational Use of Antibiotics in Urban Areas of Shaanxi Province: A Study Protocol for a Randomized Controlled Research. International journal of environmental research and public health, 15(9), 1912. https://doi.org/10.3390/ijerph15091912

Appendix
Appendix A: Multivariate analysis of covariance (MANCOVA)

	Beta	p-value	95% Confide	dence Interval Upper Bound	
			Lower Bound		
Increase in general knowledge					
Senior vs Junior*	1.149	0.527	-2.421	4.718	
School type (Private vs public*)	0.432	0.710	-1.851	2.715	
Gender (Female vs male*)	0.569	0.571	-1.407	2.546	
Age	-0.287	0.598	-1.357	0.783	
Increase in knowledge related to introduction	to Microbes				
Senior vs Junior*	-1.622	0.607	-7.827	4.583	
School type (Private vs public*)	-0.727	0.719	-4.695	3.242	
Gender (Female vs male*)	1.549	0.376	-1.887	4.985	
Age	0.470	0.619	-1.389	2.330	
Increase in knowledge related to spread of infe	ction				
Senior vs Junior*	-5.206	0.257	-14.223	3.811	
School type (Private vs public*)	4.667	0.112	-1.100	10.434	
Gender (Female vs male*)	-0.098	0.969	-5.091	4.895	
Age	-1.951	0.156	-4.654	0.751	
Increase in knowledge prevention of infection					
Senior vs Junior*	-0.162	0.942	-4.545	4.221	
School type (Private vs public*)	-0.009	0.995	-2.812	2.794	
Gender (Female vs male*)	0.981	0.427	-1.446	3.408	
Age	-0.531	0.427	-1.845	0.782	
Increase in knowledge Use of antibiotics					
Senior vs Junior*	2.901	0.563	-6.954	12.755	
School type (Private vs public*)	-7.831	0.015	-14.133	-1.529	
Gender (Female vs male*)	0.099	0.972	-5.358	5.555	
Age	-1.706	0.257	-4.659	1.247	
Increase in knowledge Overview of the concept	of antimicrobial resistar	ice			
Senior vs Junior*	-5.411	0.278	-15.213	4.390	
School type (Private vs public*)	5.574	0.081	-0.694	11.843	
Gender (Female vs male*)	-0.844	0.760	-6.271	4.583	
Age	1.857	0.214	-1.081	4.795	

Note: In the global model, the independent variable is senior or junior. Covariates are age, gender, and school type.

^{*}Reference group