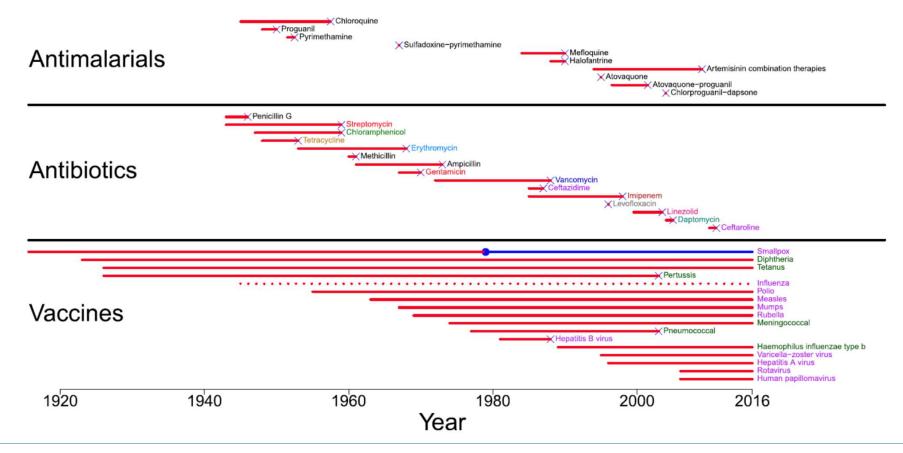


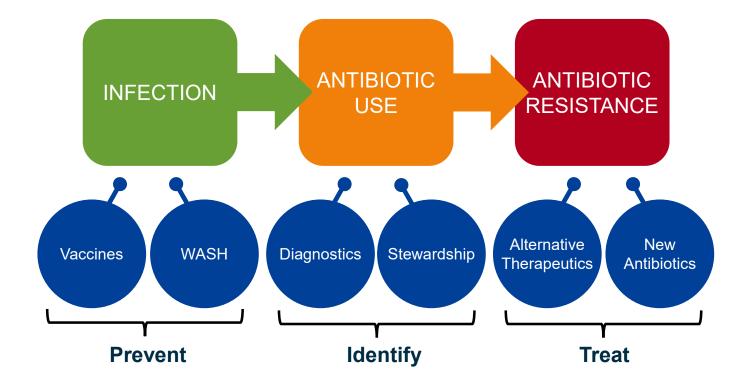
POTENTIAL IMPACT OF VACCINATION ON CURBING AMR FROM A UK AND GLOBAL PERSPECTIVE


Cal MacLennan, DPhil, FRCP, FRCPath Bill & Melinda Gates Foundation – Enteric & Diarrheal Diseases Jenner Institute, University of Oxford – Gonococcal Vaccine Project University of Birmingham – BactiVac Bacterial Vaccinology Network

Virtual AMR Innovation Mission 2021 12 May 2021

CONFIDENTIAL

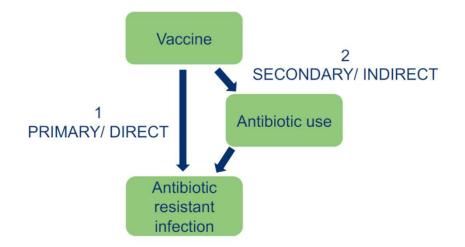
© Bill & Melinda Gates Foundation


TIME BETWEEN DEPLOYMENT AND THE FIRST DOCUMENTED FAILURE IN HUMANS DUE TO RESISTANCE: ANTIMICROBIALS VS. VACCINES

Source: Kennedy, et al. Proc Natl Acad Sci, 2019

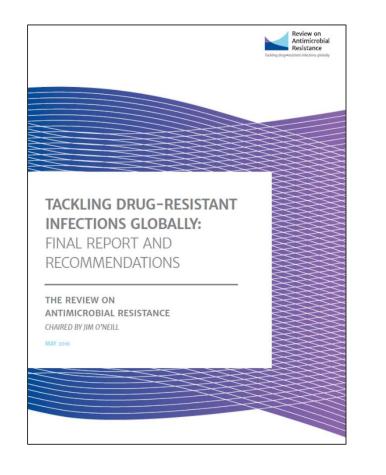
© Bill & Melinda Gates Foundation | 2

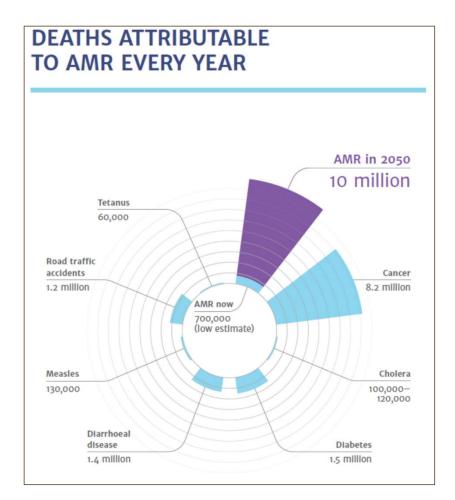
Tackling AMR requires a multi-faceted approach

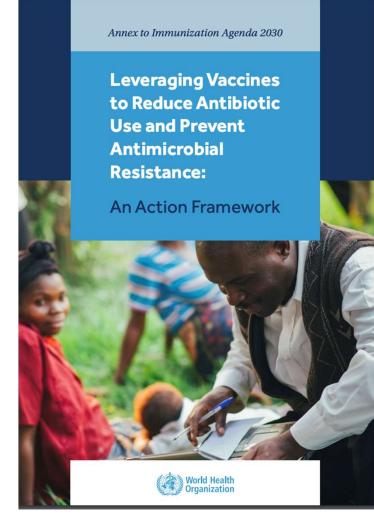

wellcome.ac.uk | @wellcometrust

How do vaccines contribute to tackling AMR? Vaccines Vaccines for AMR for non-AMR pathogens (e.g. viruses) pathogens **Directly prevent** infection, carriage, and transmission of drug-resistant organisms **Reduce occurrence of symptoms** and antibiotic use **Prevent** secondary infections with drug-resistant organisms

W


wellcome.ac.uk | @wellcometrust


IMMUNIZATION AGAINST A BACTERIAL PATHOGEN AND ITS EFFECT ON ANTIBIOTIC USE AND SPREAD OF AMR



Source: Figure: Elizabeth Klemm; Jansen, Nature Medicine, 2018

REVIEW ON ANTIMICROBIAL RESISTANCE: O'NEILL REPORT, 2016

wellcome.ac.uk | @wellcometrust

Expanding use of licensed vaccines to maximize impact on AMR

E

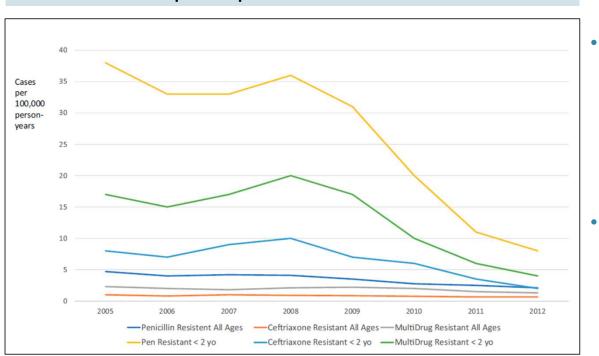
2 Developing new vaccines that contribute to prevention and control of AMR

Expanding and sharing knowledge of vaccine impact on AMR

BMGF PERSPECTIVE ON ANTIMICROBIAL RESISTANCE

- Our interest in AMR relates to our current health strategies in low- and middle-income countries
 - How does AMR jeopardize the ability to achieve defined health impact targets?
 - How can we prevent and reduce the burden of AMR?
- Focused on supporting the development of tools to reduce mortality and disease burden among the world's most vulnerable populations
 - Appropriate antibiotic use has the power to save lives in these populations
- The threat of AMR reinforces the importance of prevention of infections through vaccines – which is a core focus of foundation work

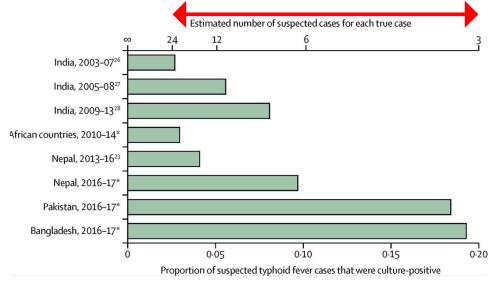
BMGF CURRENTLY SUPPORTS PREVENTION, INFECTION CONTROL, AND APPROPRIATE USE OF ANTIBIOTICS


Our continued support for the following activities are expected to have a meaningful impact on AMR:

Prevention

- Vaccine development for RSV, GBS, typhoid, Shigella, cholera, pneumococcus, HIV, TB, and malaria
- Vaccine delivery to maximize coverage for vaccine-preventable disease

IMPACT OF PNEUMOCOCCAL CONJUGATE VACCINE ON PENICILLIN NON-SUSCEPTIBLE STRAINS

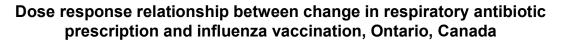

Trends in Invasive Pneumococcal Disease in South Africa, pre and post PCV Introduction

- In South Africa, PCV10 and PCV13 introduction associated with
 - 82% reduction in PCN-resistant invasive pneumococcal disease (IPD) in children
 - 85% reduction in ceftriaxone non-susceptible strains
- Introduction of PCV was associated with a reduction in antibiotic use due to the decrease in pneumococcal infections

Potential to change antibiotic prescribing behaviour beyond the target pathogen

- Fever in typhoid endemic areas is often treated empirically with antibiotics
- The majority of febrile cases are actually due to viral infections
- Elimination of typhoid through vaccination would reduce need for empiric antibiotic treatment
- Similar arguments for Group A Strep vaccines

3-25 patients treated with antibiotics for each true typhoid case




wellcome.ac.uk | @wellcometrust

Andrews et. al. Lancet ID 2019

UNIVERSAL INFLUENZA IMMUNIZATION PROGRAM IN ONTARIO, CANADA: IMPACT ON ANTIBIOTIC PRESCRIPTIONS

- Ontario introduced free universal seasonal influenza vaccination in 2000
- Comparison of rates of respiratory antibiotic prescriptions before and after universal influenza vaccination
- 64% reduction in antibiotic prescriptions
- Prevent influenza infections and disease
- Decrease likelihood of secondary bacterial infections (pneumonia and otitis media)
- Reductions in antibiotic prescriptions and use

Source: Kwong, CID, 2009

© Bill & Melinda Gates Foundation | 12

WHO AMR PRIORITY PATHOGENS

	WHO AMR priority pathogens
Vaccine Available	S. pneumoniae H. influenzae S. Typhi
No Effective Vaccine Available	M. tuberculosis Shigella spp. E. coli Non-typhoidal Salmonella S. Paratyphi A N. gonorrhoeae S. aureus K. pneumoniae H. pylori Campylobacter A. baumanii P. aeruginosa Enterobacteriaceae E. faecium

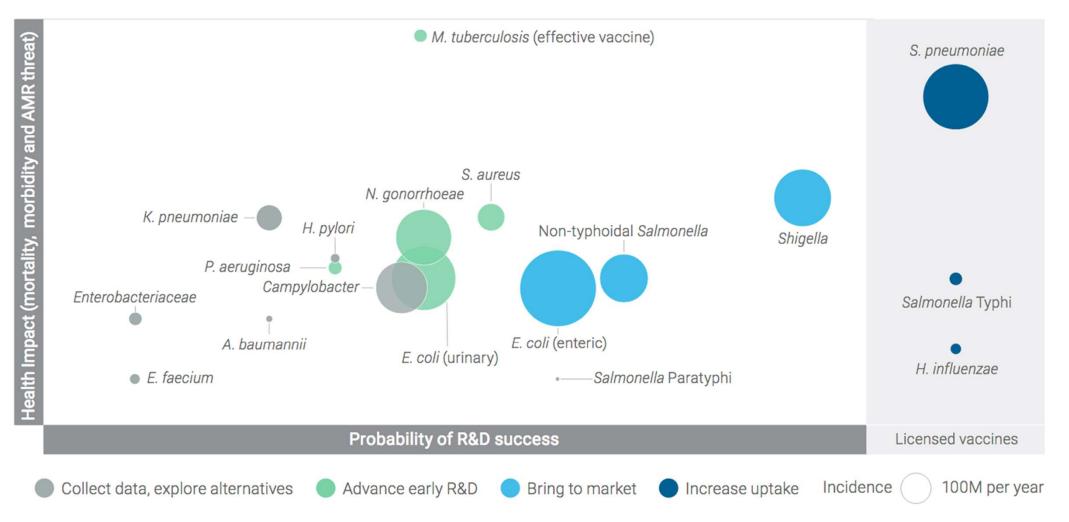
VaccinesforAMR.org

An analysis of the WHO AMR priority pathogens for suitability to vaccine development scored on health impact, R&D feasibility, and probability of uptake to provide actionable recommendations for funders and biotech companies launched in October 2018

Scorecard for pathogen assessment

Health Impact

- Mortality and morbidity
- Urgency of AMR threat
- Attributable antibiotic use


Probability of R&D success

- Pipeline robustness
- Pathogen biology
- Ease of pre-clinical and clinical R&D

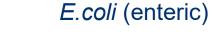
Probability of uptake

- Expected policy stance
- Payer, government and Gavi support
- Barriers to uptake
- Commercial attractiveness

Pathogen clusters for prioritised action

W

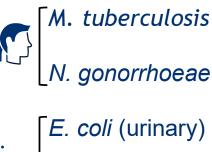
2

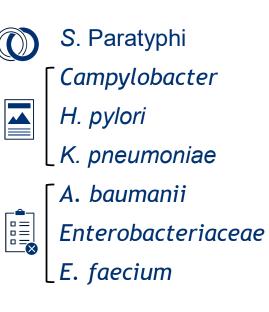



Increase uptake and access for existing, effective vaccines Bring to market new vaccines where the pathogen is better understood by accelerating clinical development

Advance early R&D for high impact pathogens with unclear R&D feasibility, by investing in early stage research

Collect data and explore alternatives for pathogens currently less well-suited to vaccine development


H. influenzae


Non-typhoidal Salmonella

Shigella spp.

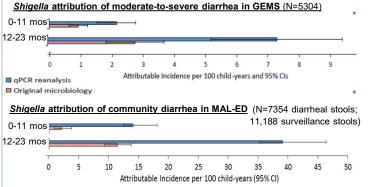
P. aeruginosa

<u>S. aureus</u>

S. Typhi

W

Example scorecard: *Shigella spp.*


SHIGELLA SPP)					
Health impact: Direct health impac		Probability of R&D success:				
1.0	2.0	1.5	1.5	1.5		
Mortality	Morbidity	Pipeline robustness	Pathogen biology	Pre-clinical and clinical R&D		
Impact on AMR reduction		Combination potential Potential combination with other enteric vaccines				
1.0 Antibiotic use	1.0 Urgency of AMR threat	Acceleration potential Drive clinical development				
Secondary health in None identified	mpact	Major barriers to deve None identified	elopment			
Sub-population ber Immunocompromis		Probability of upt				
Children		1.0	2.0	2.0	1.5	
Men who have sex i	with men	Commercial attractiveness	Expected policy stance	Payer, government	Barriers to uptake	
Alternative interver None identified	ntions	Who needs the vaccin	e / Potential vaccinatio	or Gavi support on strategy ine infant vaccination whe	re endemic; Travellers'	

vaccination in high-income countries

wellcome.ac.uk | @wellcometrust

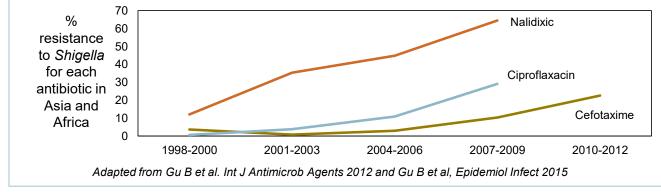
CASE FOR A SHIGELLA VACCINE

Shigella burden is greater than we thought...

1

3

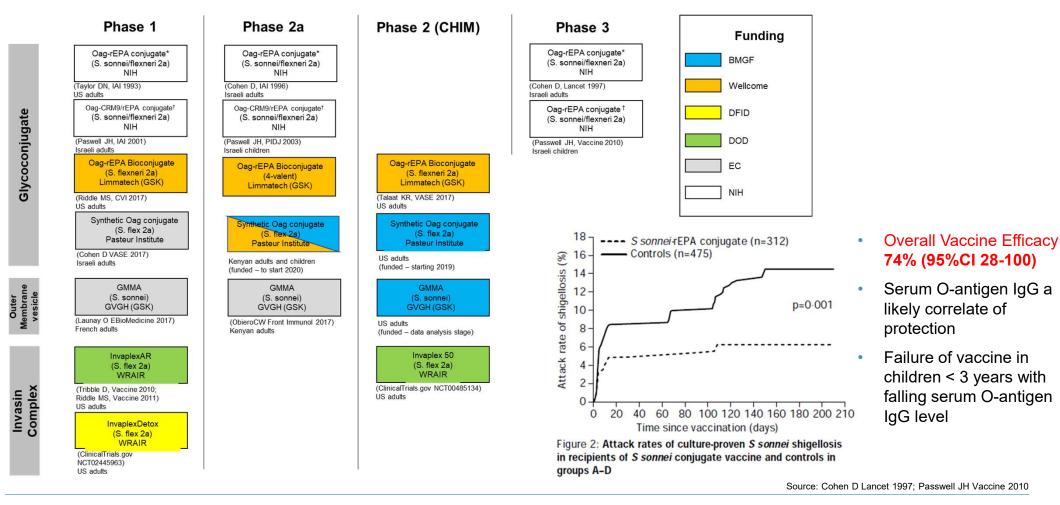
Quantitative PCR reanalysis of GEMS increased *Shigella* attribution of moderate-tosevere diarrhea by ~2-3X per 100 child-years


Quantitative PCR reanalysis of MAL-ED increased *Shigella* attribution of community diarrhea by ~7X and ~3X per 100 child-years among infants 0-11m and 12-23m, respectively

...its impact on growth faltering is significant...

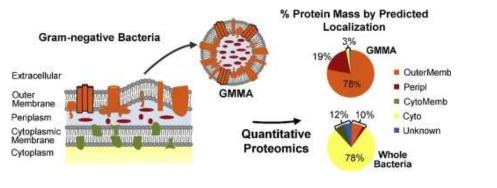
...and the threat of AMR is growing

2

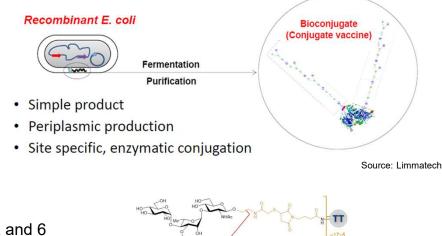

From GEMS:

- Only 35% of Indian Shigella isolates were sensitive to ciprofloxacin (WHO-recommended antibiotic for Shigella dysentery)
- > 80% of African Shigella isolates were resistant to cotrimoxazole (most commonly prescribed antibiotic in African sites)

Source: GEMS; MAL-ED; AMR data adapted from Gu et al. 2012 and 2015


© Bill & Melinda Gates Foundation | 19

SHIGELLA VACCINE PIPELINE: O-ANTIGEN VACCINES

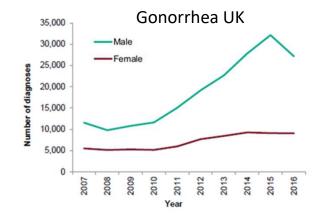


LEAD SHIGELLA VACCINE CANDIDATES

- All O-antigen based, three different technologies:
 - O-antigen rEPA bioconjugate vaccine , Limmatech/GSK
 - Outer Membrane Vesicle (mdOMV/GMMA), GVGH
 - Synthetic O-antigen TT conjugate, Institut Pasteur
- Bioconjugate efficacy in controlled human infection model:
- Descending-age study into target population: LMIC infants
- Early development: monovalent formulation S. sonnei or S. flexneri 2a
- Global epidemiology requires 4-valent: S. sonnei and S. flexneri 2a, 3a and 6

Source: Maggiore L Int J Med Microbiol. 2016

RU3

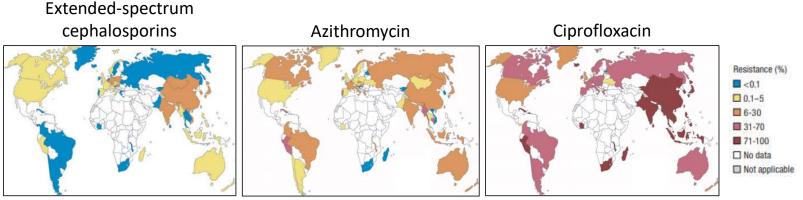

RU2

RU1

Source: Institut Pasteur

Gonorrhoea is a global threat

- Neisseria gonorrhoeae
 - Adverse reproductive health outcomes in women
 - Increases risk of HIV infection

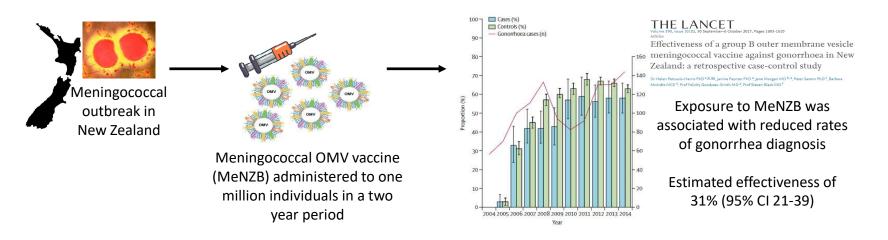


- 87 million new cases per year
 - LMICs disproportionately affected

Prevalence	Men	Women
Global	0.7%	0.9%
Africa	1.6%	1.9%

Absence of single, reliable monotherapy to treat gonorrhoea

WHO data indicate increasing gonococcal resistance to:

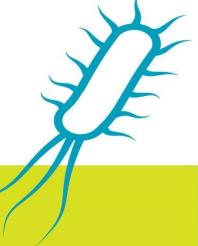

WHO Gonococcal Antimicrobial Surveillance Programme (GASP), 2017

2018 strains resistant to ceftriaxone and azithromycin

'High priority' for R&D of new treatments (WHO) and 'urgent' AMR threat (CDC)

Outer Membrane Vesicle (OMV) vaccines are effective against gonorrhoea

No gonococcal vaccine currently available with no clinical trial in ~30 years, but...


Hypothesis A gonococcal OMV-based vaccine will have greater efficacy against gonorrhoea than a meningococcal OMV-based vaccine

The BactiVac Bacterial Vaccinology Network

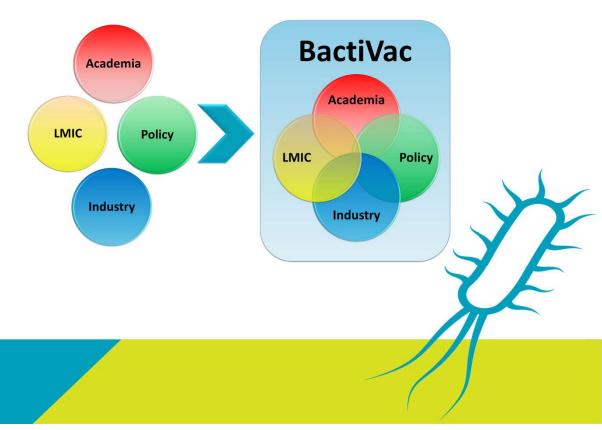
- 5 million die from bacterial infections / year
- No vaccines for many bacterial infections of global significance
- Threat of antimicrobial resistance (AMR)
- Proven strategies for bacterial vaccines
- Key expertise in UK, LMICs and globally
- No existing bacterial vaccine network

BactiVac 🖉

Contrast with vaccine for viral/outbreak pathogens

BactiVac: what is our mission?

We are a global voice for bacterial vaccinology


- Create a sustainable network for vaccine development
- Catalyst project and training funding

NIVERSITY^{of} Rmingham

UN

- Attract investment/leverage funding for LMICs/UK
- Advocacy for the development of bacterial vaccines

BactiVac

Growing our Network

1,140 members across 74 countries 48% LMIC, 13% industry

Funding leveraged for catalyst projects

No projects funded (20 completed)	40	
No. projects funded (29 completed)	40	
Total funding awarded	£2,102,125	
Funding leveraged to support project delivery	£1,626,214 + 77%	
Total follow-on funding leveraged by projects (19 awards from 11 projects)	£12,653,703 + 602%	

11 You Retweeted

Brit Soc Imm @britsocimm · 26 Mar Watch this excellent video from BactiVac Director, Professor Cal MacLennan

on the importance of vaccines #CelebrateVaccines

BactiVac Network @BactiVac · 26 Mar

We're partnering with the @BritSocImm to #CelebrateVaccines. BactiVac Director, Professor Cal MacLennan on the importance of vaccines. #CelebrateVaccines #ProtectTheNextGeneration #VaccinesWork @unibirm_MDS @hic_vac @ImmunologyUoB @NetworkValidate @IMPRINT_network @IntVetVaccNet

BactiVac Network @BactiVac · 25 Feb

Professor Adam Cunningham has been in Parliament today to attend @POST_UK's Superbugs event #POSTUKlive @unibirm_MDS @news_ub @unibirmingham @UoB_MDSRKTO @ITMBirmingham @BHPComms @IntVetVaccNet @CMO_England

V

BactiVac Network @BactiVac · 14 Apr

.@constantinolm from the National Medical Centre in Mexico City on the current challenging times and his experience of applying for Catalyst Funding. @britsocimm @IMIBirmingham @unibirm_MDS @ImmunologyUoB @hic_vac @NetworkValidate @IntVetVaccNet @IMPRINT_network @UKRL_News

Advocacy

BactiVac Network @BactiVac · 11 Feb Happy International Day of Women and Girls in Science #IDWGS! The BactiVac Network have over 400 female members! Hare's one of our

BactiVac Network have over 400 female members! Here's one of our members Dr Marisol Perez-Toledo - @WomenScienceDay @unibirm_MDS @news_ub @unibirmingham @ImmunologyUoB #WomenInScience @UoB_MDSRKTO

BactiVac Network @BactiVac · 24 Feb The BactiVac Network is growing! @unibirm_MDS @news_ub @UoB_MDSRKTO @ImmunologyUoB_@BHPComms @ITMBirmingham

SUMMARY

Vaccines play an important role in AMR by:

- 1. Reducing drug-resistant infections
- 2. Reducing antibiotic use
- 3. Reducing secondary infections

Action is needed to:

- 1. Expand the use of existing vaccines
- 2. Develop new vaccines
- 3. Collect more data Quantifying the impact is challenging

ACKNOWLEDGEMENTS

Padmini Srikantiah – BMGF

Elizabeth Klemm – Wellcome

birmingham.ac.uk/bactivac