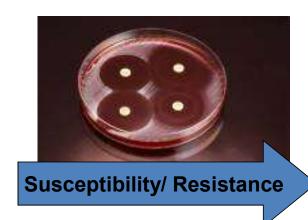


Impact of microbial diagnostics on the curbing of AMR in a *personal* UK perspective

Till T. Bachmann
University of Edinburgh

AMR Insights
Virtual AMR Innovation Mission UK 2021
10 - 12 May 2021



Unmet Need in Clinical Microbiology

Therapy

Rapid Diagnostics

- Therapy Decision
- Patient Management
- Surveillance
- Narrow Spectrum Antibiotics

TACKLING ANTIMICROBIAL RESISTANCE ON TEN FRONTS

Public awareness

Sanitation and hygiene

Antibiotics in agriculture and the environment

Vaccines and alternatives

"I call on the governments of the richest countries to mandate now that by 2020, all antibiotic prescriptions will need to be informed by up-to-date surveillance information and a rapid diagnostic test wherever one exists."

AMR Review May 19, 2016 – Tackling Drug-Resistant Infections Globally: final report and recommendations

Tackling antimicrobial resistance 2019–2024

The UK's five-year national action plan

Published 24 January 2019

Contained and controlled

The UK's 20-year vision for antimicrobial resistance

Published 24 January 2019

"... be able to report on the percentage of prescriptions supported by a diagnostic test or decision support tool by 2024."

For Dx: UK AMR Diagnostics Collaborative There has been very little progress on the review's central and most expensive recommendations for transforming research and development incentives for antibiotics, vaccines and diagnostics.

Review of Progress on Antimicrobial Resistance: Background and Analysis, Charles Clift, Centre on Global Health Security | October 2019, Chatham House

Rapid, affordable, and effective point-of-care diagnostics are urgently needed in both community and hospital settings to distinguish between viral and bacterial infections, identify pathogens, and test for AMR and susceptibility to antibiotics. However, there is insufficient development of new products due to market failures and various barriers to uptake.

Wellcome (2020). "The Global Response to AMR: Momentum, success, and critical gaps"

"Impact of microbial diagnostics on the curbing of AMR" What is the framework?

Development of AMR

Impact of AMR

Spread of AMR

Inappropriate use of antibiotic increases development of AMR

Chosen antibiotic does not work and outcome falls behind desired expectations

Organism of interest is exposed to AMR

Change Of Behaviour

New Interventions

New Interventions

AMR Systems Map – Influences on the development of AMR

Department

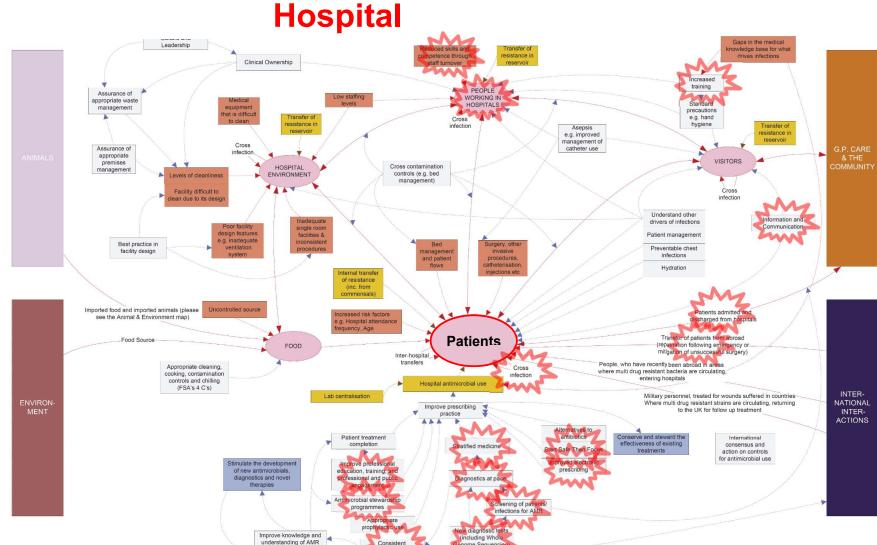
Reservoirs for microbes/

resistance

Influence on risk of infection

Influence on development of

resistance

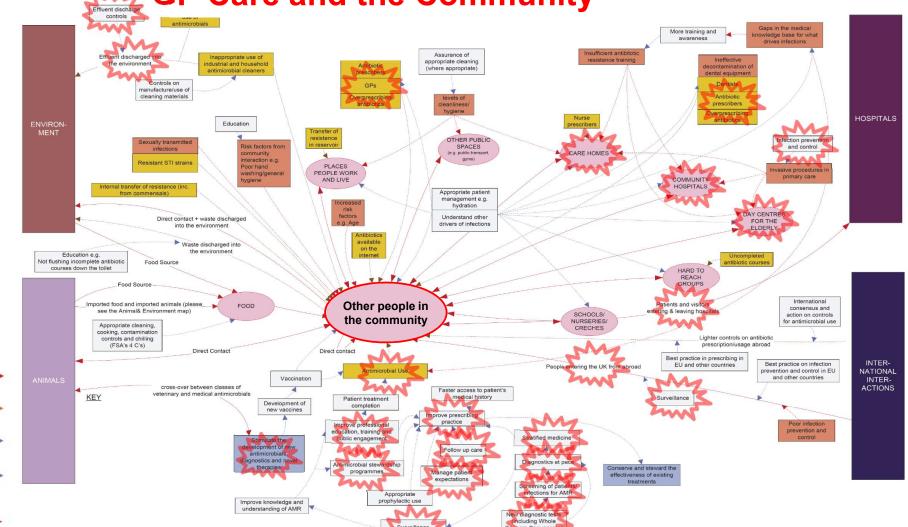

Interventions

Intended effects

Pathway for microbes

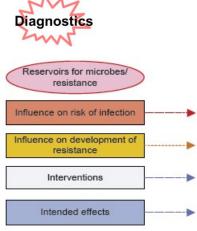
of Health

KEY

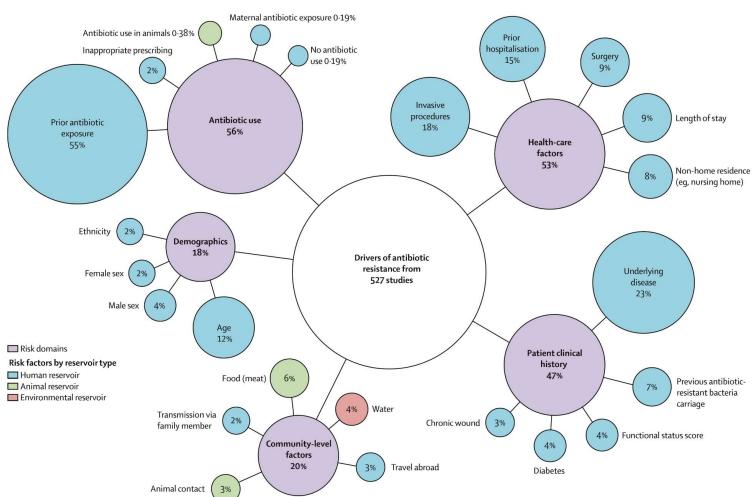


surveillance

AMR Systems Map – Influences on the development of AMR


GP Care and the Community

https://www.gov.uk/government/publications/antimicrobial-resistance-amr-systems-map


Department of Health

Pathway for microbes

Creating Evidence for **Drivers of AMR**

Gaps for studies on:

- Causal relationship between reservoirs and risk factor domains
- Low level factors associated with AMR in hospital setting
- Heterogeneous community level risk factors

Some Molecular Diagnostic Systems in Use or With Potential for Infectious Disease Diagnostics

www.drw-ltd.com

www.biocartis.com

www.molecular.roche.com www.check-points.com

www.curetis.com

www.alere-i.com

www.alere.com

www.biomerieux-diagnostics.com www.luminexcorp.com www.qiastat-dx.com

www.bosch-vivalvtic.com

www.blink-dx.com

www.twistdx.co.uk

www.quidel.com

www.optigene.com www.meridianbioscience.com

www.genefluidics.com

www.genmarkdx.com

www.mobidiag.com

nanoporetech.com

www.dnae.co.uk www.rheonix.com

www.corisbio.com

www.genepoc-diagnostics.com

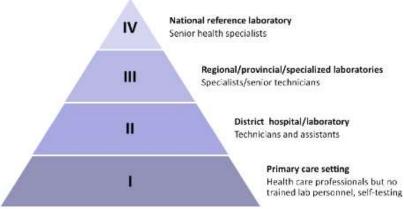
www.cubedlabs.com

www.genedriveplc.com

www.ivd-plattform.de

www.bigteclabs.com

qbscience.com



WHO AMR Diagnostics Landscape & Gap Analysis

Purpose Syndromes	Fever without a known source	Sepsis	Sore throat, cough, URTI	TB1	Pneumonia, LRTI	Diarrhea	Visible skin/soft tissue infection	Wounds (traumatic and chronic)	Urethral and vaginal discharge	UTI
Level I										
Bacteria vs other	Α	NA	Α	Α	Α	A	NA	NA	NA	A ³
Bacterial ID (culture, RDT,)	NA	NA	A, B	NA	A, B	NA	NA	NA	А, В	NA
Antibiotic Susceptibility	NA	NA	NA	NA	NA	NA	NA	NA	A, B	NA
Resistance Testing	NA	NA	NA	NA	NA	NA	NA	NA	A, B	NA
Level II										
Bacteria vs other	Α	NA	Α	Α	Α	Α	Α	Α	NA	A ³
Bacterial ID	B, C	B, C	A, B, C	A, B, C	A, B, C	B², C	A, B, C	A, B, C	A, B	A, B, C
Antibiotic Susceptibility	B, C	B, C	С	A, B, C	B, C	B², C	B, C	B, C	B, C	A, B, C
Resistance Testing	B, C	B, C	С	A, B, C	B, C	B ² , C	B, C	B, C	B, C	С

^{*}Based on informal consensus of participants attending the Technical Consultation on In Vitro Diagnostics for AMR.

Notes:

¹ MTB, the cause of human tuberculosis, was not subjected to review for inclusion in this prioritization exercise as it is already a globally established priority. And although priority TPPs to stimulate product development have been developed, more innovative new TB diagnostics are urgently needed. The section on TB was provided by the WHO Global TB Programme.

² In case it is needed in special populations.

Infection marker. https://www.who.int/medicines/access/antimicrobial resistance/en/

WHO AMR Diagnostics Target Product Profile

for a Multiplex Platform for Identification and Resistance Testing/AST of Prioritized Bacterial Pathogens

	Characteristic	Minimal requirement	Optimal requirement	
		Scope of the platform		
1 Intended of Sample preparation	Minimal sample proces three steps (requiring o	operator intervention);	resistance or phenotypic antimicrobial	
		ision step (e.g. volumetric on or other off-cartridge eps acceptable.		
	3 Target use s	Level 2 ⁶ healthcare facility trained personnel, water,	Level 2 ⁶ healthcare facility (district hospital or above) defined as having a function trained personnel, water, electricity with intermittent surges and/or outages, limite dust and medical staff on-site;	
		The target use setting do	oes not include mobile testing facilities.	
Time to result – ID and genotypic resistance testing	≤ 90 minutes	≤ 60 minutes		

List price of assay cartridge

≤ US\$ 15 at volume production.

≤ US\$ 10 at volume production.

WHO Essential Diagnostics List 2020

https://www.who.int/publications/m/item/the-who-edl-brochure

Discipline	Diagnostic test	Test purpose	Assay format	Specimen type	
Clinical microbiology	Staining For the presumptive identification of procedures pathogens and for determination of mi morphology		Microscopic examination of slides which may use different types of microscopes and stains	Disease-appropriate specimens (e.g. sputum, venous whole blood, urine, stool, body fluids, cerebrospinal fluid or cultures)	
	Culture Initial step in detection and identification of bacterial and fungal species for selection of appropriate antimicrobial regimens		Culture on growth media plates or broth in an incubator followed by recovery of isolates and species identification (traditional manual techniques or automated equipment)	Disease-appropriate specimens (e.g. urine, stool, sputum, body fluids, e.g. cerebrospinal fluid, etc.)	
	Blood culture	To detect bacterial and fungal bloodstream infections (sepsis)	Blood culture bottle in an incubator followed by recovery of isolates (traditional manual techniques or automated equipment)	Venous whole blood	
	Genus and species of identify the genus or species of bacteria or fungi from microbial isolates identification of bacteria and fungi		A range of biochemical tests that may be performed manually or on automated equipment	Microbial isolates	

II.a General IVDs for use in clinical laboratories continued						
Discipline	Diagnostic test	Test purpose	Assay format	Specimen type		
Clinical microbiology continued	Antimicrobial susceptibility testing	Final step in selection of appropriate antibiotics after species identification and interpretation by EUCAST ²¹ and CLSI guidelines ²²	Antimicrobial susceptibility testing of isolates may be done manually (by disc diffusion, gradient tests and broth microdilution), or by automated platforms	Microbial isolates		
		Note: WHO regards the development of antimicrobial resistance (AMR) a high-priority global health issue. See WHO Global Antimicrobial Resistance Surveillance	check the EDL and feedback for Al	•		

EDLSecretariat@who.int

The selection and use of essential in vitro diagnostics: report of the third meeting of the WHO Strategic Advisory Group of Experts on In Vitro Diagnostics, 2020 (including the third WHO model list of essential in vitro diagnostics). Geneva: World Health Organization; 2021 (WHO Technical Report Series, No. 1031). Licence: CC BY-NC-SA 3.0 IGO. https://www.who.int/publications/i/item/9789240019102

System (GLASS):

https://www.who.int/activities/facilitating-

global-surveillance-of-antimicrobial-

Longitude Prize

Launched in 2014

£8 million Prize

Funded by Nesta & Innovate UK

1 winner, first past the post

Prize deadline September 2022

nesta. Challenges

The Longitude Prize is a £10 million prize fund with an £8 million payout that will reward a competitor that can develop a point-of-care diagnostic test that will conserve antibiotics for future generations.

The test must be **accurate**, **rapid**, **affordable** and **easy to use** anywhere in the world.

54 competitors across 12 countries (majority: UK, EU, US and India)

Types of tests competing:

- urinary tract infections tests
- bloodstream infection and sepsis tests
- respiratory treat infections tests

Longitude Prize Criteria

LONGITUDE PRIZE WHAT KIND OF TEST COULD WIN?

COLD CHAIN

NO **MAINS POWER**

THE WINNING TEST MUST BE...

NEEDED

Improve the antibiotic treatment decision of a globally occurring problem

AFFORDABLE

Affordable for purchase and use everywhere that it is needed

EASY TO USE

Can be used and interpreted anywhere in the world with minimal training

SAFE

The benefits far outweigh any risks

ACCURATE

Eliminate harmful treatment decisions and give confidence to the user

RAPID

Sample collection to result in less than 30 minutes

CONNECTED (OPTIONAL)

Tests with data-recording and transmission will be favoured

SCALABLE

A plan for full-scale manufacture and distribution

Teams advancing

- Advanced technology pathogen detection and antibiotic susceptibility and resistance tests
- Analytical performance data collected
- Attracted significant investment of funding
- Collaborative arrangements with marketing and manufacturing partner
- Clinical validation studies ongoing or planned (Covid-19 causing delays)

UK-India DOSA - Project Diagnostics for One Health and User Driven Solutions for AMR

DOSA is funded by UK Research and Innovation / Economic Social Science Research Council, Newton Fund, and the Government of India's Department of Biotechnology

DOSA Objectives in the One Health Context

Human Health
Urinary Tract Infections

- 150 million cases pa globally
- Major cause of antibiotic use in community

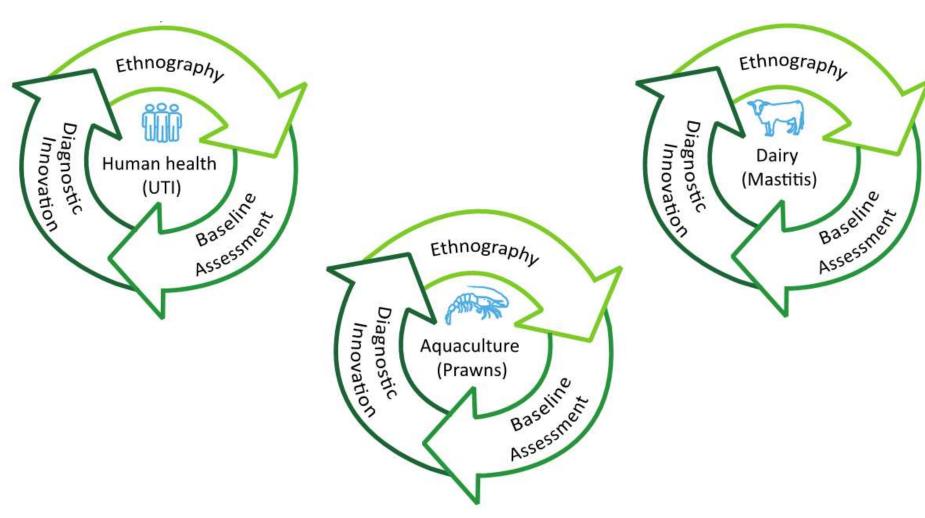
Dairy Farming Mastitis

- India has most dairy animals in world
- Mastitis major cause of antibiotic use
- Farmed shrimp production on the rise globally

Aquaculture

Infections &

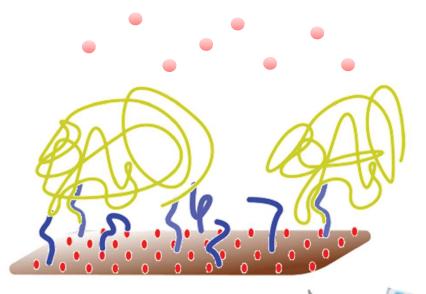
Environment


 Antibiotic residues in shrimp farming cause of concern

- Foxman B. The epidemiology of urinary tract infection. Nat Rev Urol. 2010 Dec;7(12):653-60.
- Mutua F et al. A review of animal health and drug use practices in India, and their possible link to antimicrobial resistance. Antimicrob Resist Infect Control. 2020 Jul 8:9(1):103.
- Thornber K et al. Evaluating antimicrobial resistance in the global shrimp industry. Rev Aquac. 2020 May;12(2):966-986.

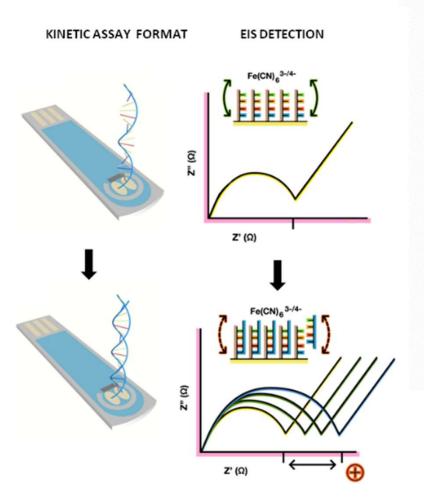
DOSA is funded by UK Research and Innovation / Economic Social Science Research Council, Newton Fund, and the Government of India's Department of Biotechnology

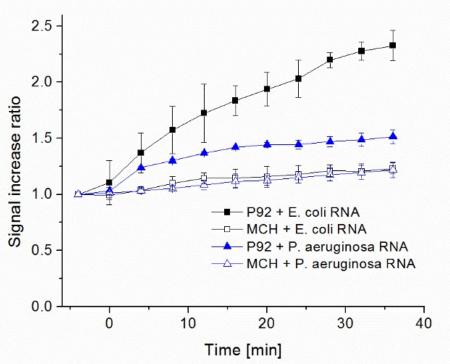
Integrated Approach to One Health Diagnostic Solutions for AMR


DOSA is funded by UK Research and Innovation / Economic Social Science Research Council, Newton Fund, and the Government of India's Department of Biotechnology

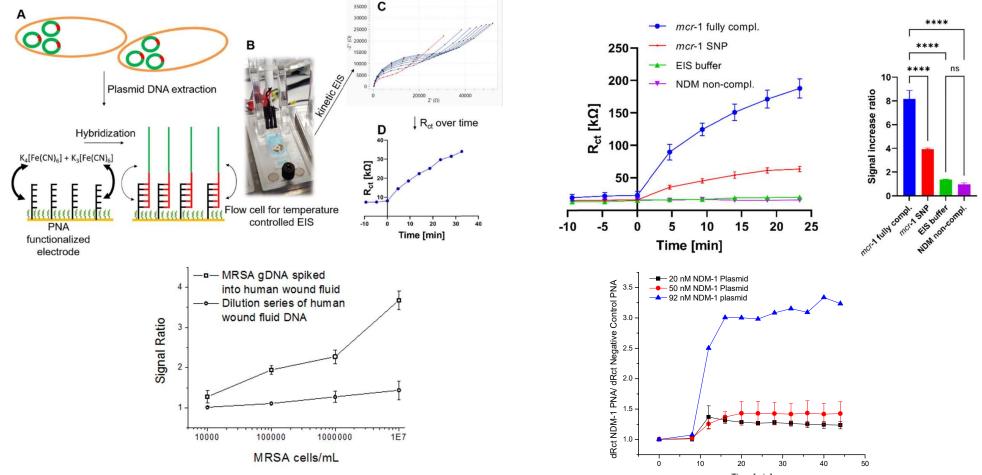
Electrochemical Biosensors for Amplification Free Detection

- EIS Electrochemical Impedance Spectroscopy
- How easily can an electroactive substance reach electrode surface?
- Label free & Amplification free
- Small AC potential at different frequencies → current response → impedance
- Functionalisation of electrode introduces specificity
- Platform technology



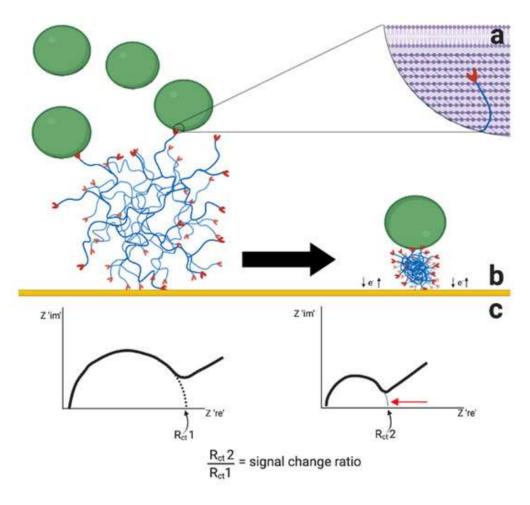


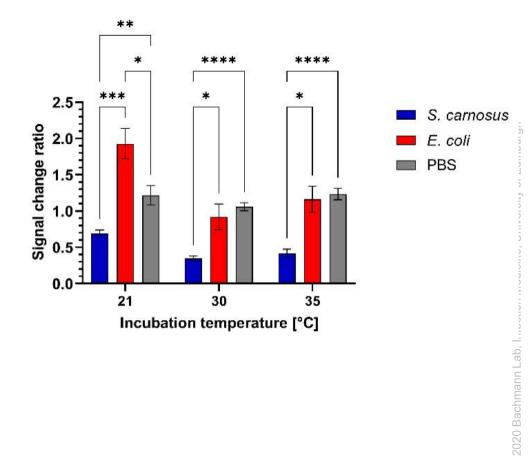
Bacterial ID through label- and amplification-free detection of bacterial ribosomal RNA


Signal increase ratios obtained at screen-printed electrodes functionalised with *E. coli* specific PNA probe P92 and MCH only (negative control) following exposure to 750 pM *E. coli* and *P. aeruginosa* rRNA. EIS measurements were continuously repeated in the presence of the target solution without any washing steps.

Henihan G, Schulze H, Corrigan D, Giraud G, Terry JG, Hardie A, Campbell CJ, Walton AJ, Crain J, Pethig R, Templeton KE, Mount AR, Bachmann TT 2016. Label- and amplification-free electrochemical detection of bacterial ribosomal RNA. Biosensors & Bioelectronics 81, 487-494.

Towards **AMR POCT**


Colistin (mcr-1), Carbapenem (NDM-1) and Methicillin (mecA) resistance detection

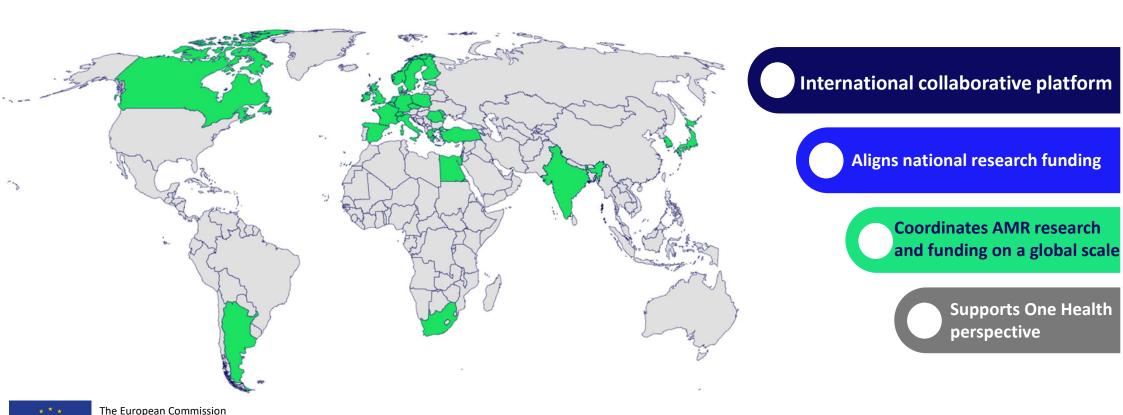


- Schulze H, Arnott A, Libori A, Obaje EA, Bachmann TT. Temperature-Enhanced mcr-1 Colistin Resistance Gene Detection with Electrochemical Impedance Spectroscopy Biose History Biose Hi
- Huang JM, Henihan G, Macdonald D, Michalowski A, Templeton K, Gibb AP, Schulze H, Bachmann TT (2015) Rapid Electrochemical Detection of New Delhi Metallo-beta-lactamase Genes To Enable Point-of-Care Testing of Carbapenem-Resistant Enterobacteriaceae. Anal. Chem. 87 (15), 7738-7745.
- Development of a PCR-free electrochemical point of care test for clinical detection of methicillin resistant Staphylococcus aureus (MRSA). Corrigan DK, Schulze H, Henihan G, Hardie A, Ciani I, Giraud G, Terry JG, Walton AJ, Pethig R, Ghazal P, Crain J, Campbell CJ, Templeton KE, Mount AR, Bachmann TT. Analyst. 2013 Oct 15:138(22):6997-700

Bacteria Detection for POCT - Functional Polymer Sensors

Uniting 28 countries to address AMR

(DG Research) is a full non-


twitter.com/JPIAM

facebook.com/JPIAM

voting member

www.jpiamr.eu R

JPIAMR: A global organisation

JPIAMR: A global One Health AMR Research Funder

Therapeutics

Discovery of new antimicrobials and therapeutic alternatives, and the improvement of current antimicrobials and treatment regimens

Diagnostics

Development and improvement of diagnostics to improve the use of antimicrobials and alternatives to antimicrobials

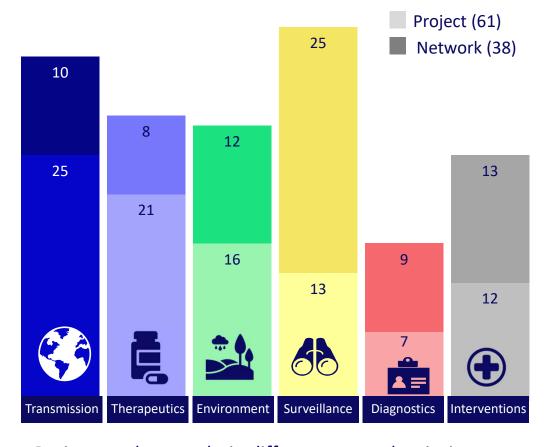
Surveillance

Optimisation of surveillance systems to understand the drivers and burden of antimicrobial resistance in a One Health perspective

Transmission

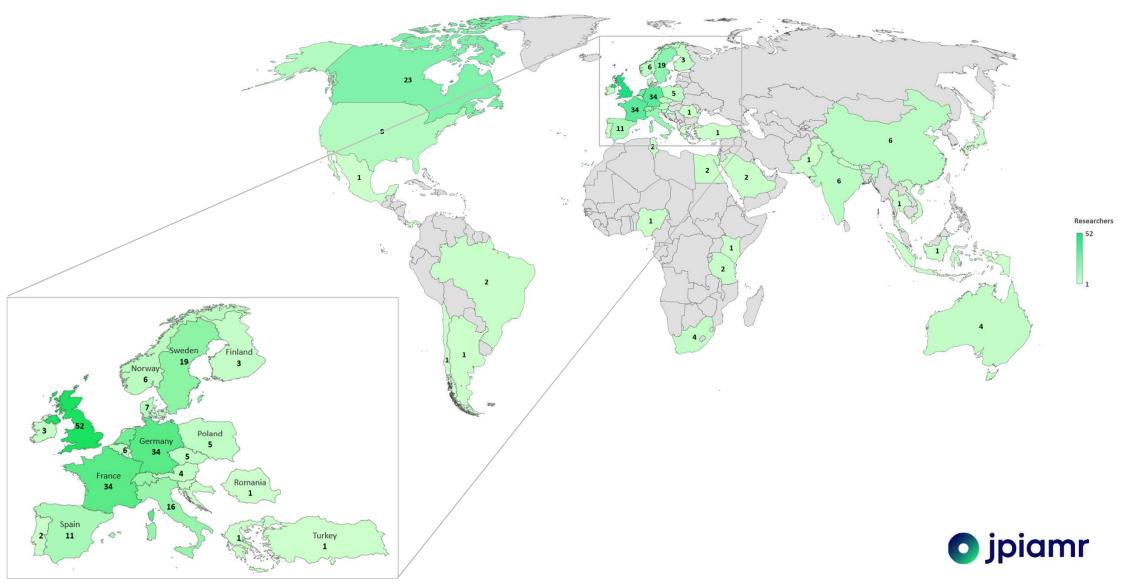
Understanding and preventing the transmission of antimicrobial resistance

Environment



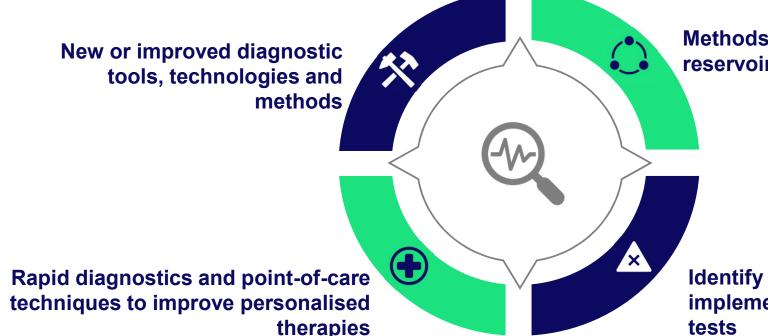
The role of the environment in the persistence, selection and spread of antimicrobial resistance

Interventions


Investigation and improvement of infection prevention and control measures in One Health settings

Projects and networks in different research priority areas

JPIAMR supported researchers worldwide on Diagnostics


Overview of the JPIAMR diagnostics projects and networks

5.3 M€

324 researchers

Methods to detect AMR in multiple reservoirs

Identify barriers of development and implementation of rapid diagnostic tests

JPIAMR Diagnostics Networks and Outcomes

Identify gaps and solutions to current and future NGS / AMR diagnostics

Seq4AMR

Strategic Action Plan on Teaching & Training for AMR **Diagnostics**

AMR Dx Global

VetCAST

Define clinical breakpoints for antimicrobial drugs used in veterinary medicine in Europe to harmonise the results of AST

En Route towards European Clinical Breakpoints for Veterinary Antimicrobial Susceptibility Testing: A Position Paper Explaining the **VetCAST Approach**

AMR-RDT

Identify barriers of development and implementation of **RDT**

nature reviews microbiology

Explore Content > Journal Information > Publish With Us >

nature > nature reviews microbiology > consensus statements > article

Consensus Statement | Open Access | Published: 17 October 2018

Developmental roadmap for antimicrobial susceptibility testing systems

Alex van Belkum ☑, Till T. Bachmann, Gerd Lüdke, Jan Gorm Lisby, Gunnar Kahlmeter, Allan Mohess, Karsten Becker, John P. Hays, Neil Woodford, Konstantinos Mitsakakis, Jacob Moran-Gilad, Jordi Vila. Harald Peter, John H. Rex, Wm. Michael Dunne Jr & the JPIAMR AMR-RDT Working Group on Antimicrobial Resistance and Rapid Diagnostic Testing

Nature Reviews Microbiology 17, 51-62(2019) Cite this article

Many Thanks for Your Attention

"Without diagnostics, medicine is blind"

Alain Mérieux, President, Fondation Mérieux

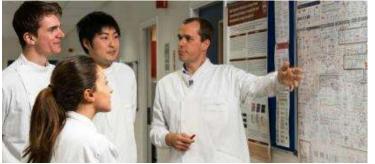
Contact Details

Till T. Bachmann, PhD FRSB

- Professor of Molecular Diagnostics and Infection
- Deputy Head of Infection Medicine
- Director University of Edinburgh Postgraduate programmes Zhejiang University – University of Edinburgh Institute
- Director Clinical Microbiology and Infectious Diseases
 Programme University of Edinburgh
- AMR Strategy Lead Edinburgh Infectious Diseases
- Vice Chair of JPIAMR Scientific Advisory Board
- Longitude Prize Advisory Panel Member

Infection Medicine, University of Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB

till.bachmann@ed.ac.uk www.pathwaymedicine.ed.ac.uk



achmann Lab, Infection Medicine, University of Edinburg