

ARTIFICIAL INTELLIGENCE AND AMR

NOVEMBER 2019

Allibert MDx Consulting

To Enhance your Vision and your Strategy in Molecular Diagnostic...

Patrice Allibert, Ph.D

FACTS

From Public Health England | Guidance - Health Matters: Antimicrobial Resistance

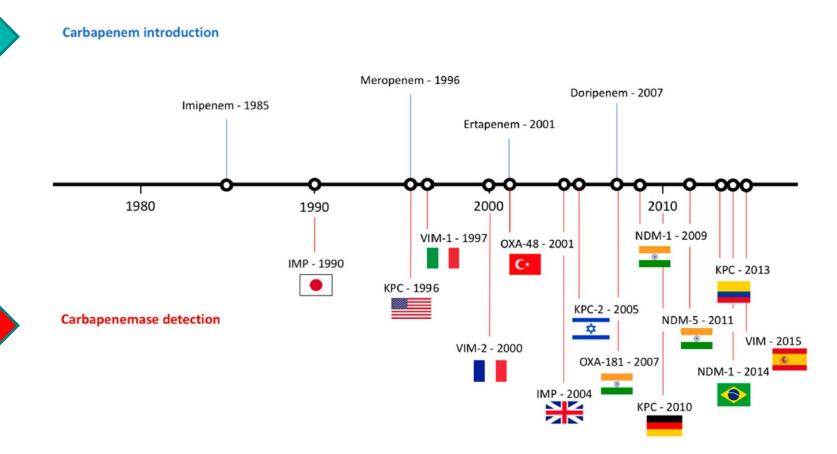
Threat Level of Drug Resistant Pathogens According to the CDC

MDR Acinetobacter

Carbapenem resistant Enterobacteriaceae (CREs) Clostridium difficile Cephalosporin resistant Neisseria gonorrhoeae



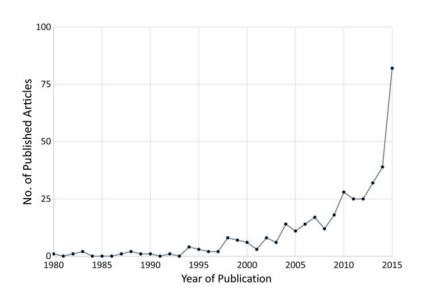
MDR Pseudomonas aeruginosa
MDR Tuberculosis
ESBL-producing Enterobacteriaceae
Vancomycin resistant enterococci (VRE)
Methicillin resistant Staphylococcus aureus (MRSA)



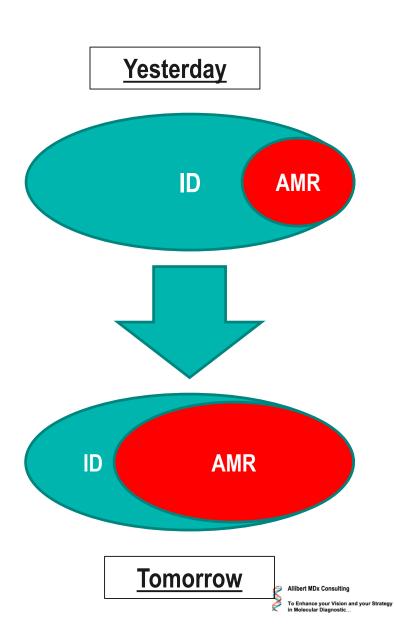
Vancomycin resistant Staphylococcus aureus

Drug resistant Streptococcus pneumoniae

New Drugs/Resistance... the race!


Figure 2. Timeline representing the introduction of carbapenems and the appearance of carbapenemases worldwide.

Al and Infectious Diseases


INFECTIOUS DISEASES AND AMR

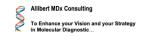
- <u>Since 2015</u>, we see a significant increase of publications and interest in this important domain

Figure 1. Exponential increase since the early 2000s in publications at the intersection of big data and infectious diseases. Annual trends in the number of publications were identified through a Scopus search for articles published between 1980 and 2015, using the following keywords: (big data AND infectious diseases) OR (big data AND epidemics) OR (digital epidemiology AND infectious diseases).

Big Data for Infectious Disease Surveillance and Modeling • JID 2016:214 (Suppl 4) • S375

Why AMR threat will not stop...

How AI CAN HELP AMR?


- In 2050, 10 millions of people will die due to AMR:
 - We will obviously see a significant increase of Community Acquired Infection
 - Situation will not be manageable for hospitals
 - It will be impossible to consider and treat all patients at the same level

A sort of triage will be required to "classify" patient, their exposure to AMR and their capacity to be treated

HOW AI CAN HELP AMR?

- Epidemiological purpose:
 - It is known AMR birth has multiple origins
 - Animals fed with antibiotics
 - Agriculture and soils treatments
 - Human overusing antibiotics
 - Water contaminated by AMR strains
 - It is known AMR spreading is mainly due to the movement of population
 - Travels
 - Migration of Human ... but also birds!

All and Big data can definitively help to provide regular mapping of AMR spreading.

How AI CAN HELP AMR?

Patient exposure to AMR

- We are not all equal regarding our exposure to Infectious Diseases and AMR
- We can anticipate major problems for hospitals when they will be exposed to Community Acquired AMR outbreaks..
 - We already see a significant increase of UTI resistance to carbapenem
- Stratification of patient exposure to AMR will help hospitals at admission for the first triage
- Big data can help to analyse all data available and generate tools enabling this triage:
 - Where I live
 - Where I work
 - Family history
 - Friends history
 - Personal history and exposure to Infectious Diseases and AMT
 - Travel and much more

Al and Big data can definitively help to generate appropriate tools to evaluate the risk of the patient to AMR